Files
doris/be/src/exec/blocking_join_node.cpp
2019-06-14 23:38:31 +08:00

220 lines
8.0 KiB
C++

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "exec/blocking_join_node.h"
#include <sstream>
#include "exprs/expr.h"
#include "runtime/row_batch.h"
#include "runtime/runtime_state.h"
#include "util/runtime_profile.h"
#include "gen_cpp/PlanNodes_types.h"
namespace doris {
const char* BlockingJoinNode::LLVM_CLASS_NAME = "class.doris::BlockingJoinNode";
BlockingJoinNode::BlockingJoinNode(const std::string& node_name,
const TJoinOp::type join_op,
ObjectPool* pool,
const TPlanNode& tnode,
const DescriptorTbl& descs)
: ExecNode(pool, tnode, descs),
_node_name(node_name),
_join_op(join_op) {
}
Status BlockingJoinNode::init(const TPlanNode& tnode, RuntimeState* state) {
return ExecNode::init(tnode, state);
}
BlockingJoinNode::~BlockingJoinNode() {
// _left_batch must be cleaned up in close() to ensure proper resource freeing.
DCHECK(_left_batch == NULL);
}
Status BlockingJoinNode::prepare(RuntimeState* state) {
SCOPED_TIMER(_runtime_profile->total_time_counter());
RETURN_IF_ERROR(ExecNode::prepare(state));
_build_pool.reset(new MemPool(mem_tracker()));
_build_timer = ADD_TIMER(runtime_profile(), "BuildTime");
_left_child_timer = ADD_TIMER(runtime_profile(), "LeftChildTime");
_build_row_counter = ADD_COUNTER(runtime_profile(), "BuildRows", TUnit::UNIT);
_left_child_row_counter = ADD_COUNTER(runtime_profile(), "LeftChildRows",
TUnit::UNIT);
_result_tuple_row_size = _row_descriptor.tuple_descriptors().size() * sizeof(Tuple*);
// pre-compute the tuple index of build tuples in the output row
int num_left_tuples = child(0)->row_desc().tuple_descriptors().size();
int num_build_tuples = child(1)->row_desc().tuple_descriptors().size();
_build_tuple_size = num_build_tuples;
_build_tuple_idx.reserve(_build_tuple_size);
for (int i = 0; i < _build_tuple_size; ++i) {
TupleDescriptor* build_tuple_desc = child(1)->row_desc().tuple_descriptors()[i];
_build_tuple_idx.push_back(_row_descriptor.get_tuple_idx(build_tuple_desc->id()));
}
_probe_tuple_row_size = num_left_tuples * sizeof(Tuple*);
_build_tuple_row_size = num_build_tuples * sizeof(Tuple*);
_left_batch.reset(new RowBatch(child(0)->row_desc(), state->batch_size(), mem_tracker()));
return Status::OK();
}
Status BlockingJoinNode::close(RuntimeState* state) {
// TODO(zhaochun): avoid double close
// if (is_closed()) return Status::OK();
_left_batch.reset();
ExecNode::close(state);
return Status::OK();
}
void BlockingJoinNode::build_side_thread(RuntimeState* state, boost::promise<Status>* status) {
status->set_value(construct_build_side(state));
// Release the thread token as soon as possible (before the main thread joins
// on it). This way, if we had a chain of 10 joins using 1 additional thread,
// we'd keep the additional thread busy the whole time.
state->resource_pool()->release_thread_token(false);
}
Status BlockingJoinNode::open(RuntimeState* state) {
RETURN_IF_ERROR(ExecNode::open(state));
SCOPED_TIMER(_runtime_profile->total_time_counter());
// RETURN_IF_ERROR(Expr::open(_conjuncts, state));
RETURN_IF_CANCELLED(state);
// TODO(zhaochun)
// RETURN_IF_ERROR(state->check_query_state());
_eos = false;
// Kick-off the construction of the build-side table in a separate
// thread, so that the left child can do any initialisation in parallel.
// Only do this if we can get a thread token. Otherwise, do this in the
// main thread
boost::promise<Status> build_side_status;
if (state->resource_pool()->try_acquire_thread_token()) {
add_runtime_exec_option("Join Build-Side Prepared Asynchronously");
// Thread build_thread(_node_name, "build thread",
// bind(&BlockingJoinNode::BuildSideThread, this, state, &build_side_status));
// if (!state->cgroup().empty()) {
// RETURN_IF_ERROR(
// state->exec_env()->cgroups_mgr()->assign_thread_to_cgroup(
// build_thread, state->cgroup()));
// }
boost::thread(bind(&BlockingJoinNode::build_side_thread, this, state, &build_side_status));
} else {
build_side_status.set_value(construct_build_side(state));
}
// Open the left child so that it may perform any initialisation in parallel.
// Don't exit even if we see an error, we still need to wait for the build thread
// to finish.
Status open_status = child(0)->open(state);
// Blocks until ConstructBuildSide has returned, after which the build side structures
// are fully constructed.
RETURN_IF_ERROR(build_side_status.get_future().get());
// We can close the right child to release its resources because its input has been
// fully consumed.
child(1)->close(state);
RETURN_IF_ERROR(open_status);
// Seed left child in preparation for get_next().
while (true) {
RETURN_IF_ERROR(child(0)->get_next(state, _left_batch.get(), &_left_side_eos));
COUNTER_UPDATE(_left_child_row_counter, _left_batch->num_rows());
_left_batch_pos = 0;
if (_left_batch->num_rows() == 0) {
if (_left_side_eos) {
init_get_next(NULL /* eos */);
_eos = true;
break;
}
_left_batch->reset();
continue;
} else {
_current_left_child_row = _left_batch->get_row(_left_batch_pos++);
init_get_next(_current_left_child_row);
break;
}
}
return Status::OK();
}
void BlockingJoinNode::debug_string(int indentation_level, std::stringstream* out) const {
*out << std::string(indentation_level * 2, ' ');
*out << _node_name;
*out << "(eos=" << (_eos ? "true" : "false")
<< " left_batch_pos=" << _left_batch_pos;
add_to_debug_string(indentation_level, out);
ExecNode::debug_string(indentation_level, out);
*out << ")";
}
std::string BlockingJoinNode::get_left_child_row_string(TupleRow* row) {
std::stringstream out;
out << "[";
int* _build_tuple_idx_ptr = &_build_tuple_idx[0];
for (int i = 0; i < row_desc().tuple_descriptors().size(); ++i) {
if (i != 0) {
out << " ";
}
int* is_build_tuple =
std::find(_build_tuple_idx_ptr, _build_tuple_idx_ptr + _build_tuple_size, i);
if (is_build_tuple != _build_tuple_idx_ptr + _build_tuple_size) {
out << Tuple::to_string(NULL, *row_desc().tuple_descriptors()[i]);
} else {
out << Tuple::to_string(row->get_tuple(i), *row_desc().tuple_descriptors()[i]);
}
}
out << "]";
return out.str();
}
// This function is replaced by codegen
void BlockingJoinNode::create_output_row(TupleRow* out, TupleRow* left, TupleRow* build) {
uint8_t* out_ptr = reinterpret_cast<uint8_t*>(out);
if (left == NULL) {
memset(out_ptr, 0, _probe_tuple_row_size);
} else {
memcpy(out_ptr, left, _probe_tuple_row_size);
}
if (build == NULL) {
memset(out_ptr + _probe_tuple_row_size, 0, _build_tuple_row_size);
} else {
memcpy(out_ptr + _probe_tuple_row_size, build, _build_tuple_row_size);
}
}
}