!467 Extract restriction OR clauses whether or not they are indexable.

Merge pull request !467 from 吴岳川/master
This commit is contained in:
opengauss-bot
2020-12-28 20:36:23 +08:00
committed by Gitee
15 changed files with 650 additions and 410 deletions

View File

@ -20,10 +20,10 @@ endif
ifeq ($(enable_multiple_nodes), yes)
OBJS = allpaths.o clausesel.o costsize.o equivclass.o indxpath.o \
joinpath.o joinrels.o orindxpath.o pathkeys.o tidpath.o
joinpath.o joinrels.o pathkeys.o tidpath.o
else
OBJS = allpaths.o clausesel.o costsize.o equivclass.o indxpath.o \
joinpath.o joinrels.o orindxpath.o pathkeys.o tidpath.o \
joinpath.o joinrels.o pathkeys.o tidpath.o \
pgxcpath_single.o streampath_single.o
endif

View File

@ -741,16 +741,6 @@ static void set_plain_rel_size(PlannerInfo* root, RelOptInfo* rel, RangeTblEntry
if (rte->tablesample == NULL) {
/* Mark rel with estimated output rows, width, etc */
set_baserel_size_estimates(root, rel);
/*
* Check to see if we can extract any restriction conditions from join
* quals that are OR-of-AND structures. If so, add them to the rel's
* restriction list, and redo the above steps.
*/
if (create_or_index_quals(root, rel)) {
check_partial_indexes(root, rel);
set_baserel_size_estimates(root, rel);
}
} else {
/* Sampled relation */
set_tablesample_rel_size(root, rel, rte);

View File

@ -1521,7 +1521,8 @@ static Path* choose_bitmap_and(PlannerInfo* root, RelOptInfo* rel, List* paths,
* we can remove this limitation. (But note that this also defends
* against flat-out duplicate input paths, which can happen because
* match_join_clauses_to_index will find the same OR join clauses that
* create_or_index_quals has pulled OR restriction clauses out of.)
* extract_restriction_or_clauses has pulled OR restriction clauses out
* of.)
*
* For the same reason, we reject AND combinations in which an index
* predicate clause duplicates another clause. Here we find it necessary

View File

@ -1,180 +0,0 @@
/* -------------------------------------------------------------------------
*
* orindxpath.cpp
* Routines to find index paths that match a set of OR clauses
*
* Portions Copyright (c) 2020 Huawei Technologies Co.,Ltd.
* Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/gausskernel/optimizer/path/orindxpath.cpp
*
* -------------------------------------------------------------------------
*/
#include "postgres.h"
#include "knl/knl_variable.h"
#include "optimizer/cost.h"
#include "optimizer/paths.h"
#include "optimizer/restrictinfo.h"
/* ----------
* create_or_index_quals
* Examine join OR-of-AND quals to see if any useful restriction OR
* clauses can be extracted. If so, add them to the query.
*
* Although a join clause must reference other relations overall,
* an OR of ANDs clause might contain sub-clauses that reference just this
* relation and can be used to build a restriction clause.
* For example consider
* WHERE ((a.x = 42 AND b.y = 43) OR (a.x = 44 AND b.z = 45));
* We can transform this into
* WHERE ((a.x = 42 AND b.y = 43) OR (a.x = 44 AND b.z = 45))
* AND (a.x = 42 OR a.x = 44)
* AND (b.y = 43 OR b.z = 45);
* which opens the potential to build OR indexscans on a and b. In essence
* this is a partial transformation to CNF (AND of ORs format). It is not
* complete, however, because we do not unravel the original OR --- doing so
* would usually bloat the qualification expression to little gain.
*
* The added quals are partially redundant with the original OR, and therefore
* will cause the size of the joinrel to be underestimated when it is finally
* formed. (This would be true of a full transformation to CNF as well; the
* fault is not really in the transformation, but in clauselist_selectivity's
* inability to recognize redundant conditions.) To minimize the collateral
* damage, we want to minimize the number of quals added. Therefore we do
* not add every possible extracted restriction condition to the query.
* Instead, we search for the single restriction condition that generates
* the most useful (cheapest) OR indexscan, and add only that condition.
* This is a pretty ad-hoc heuristic, but quite useful.
*
* We can then compensate for the redundancy of the added qual by poking
* the recorded selectivity of the original OR clause, thereby ensuring
* the added qual doesn't change the estimated size of the joinrel when
* it is finally formed. This is a MAJOR HACK: it depends on the fact
* that clause selectivities are cached and on the fact that the same
* RestrictInfo node will appear in every joininfo list that might be used
* when the joinrel is formed. And it probably isn't right in cases where
* the size estimation is nonlinear (i.e., outer and IN joins). But it
* beats not doing anything.
*
* NOTE: one might think this messiness could be worked around by generating
* the indexscan path with a small path->rows value, and not touching the
* rel's baserestrictinfo or rel->rows. However, that does not work.
* The optimizer's fundamental design assumes that every general-purpose
* Path for a given relation generates the same number of rows. Without
* this assumption we'd not be able to optimize solely on the cost of Paths,
* but would have to take number of output rows into account as well.
* (The parameterized-paths stuff almost fixes this, but not quite...)
*
* 'rel' is the relation entry for which quals are to be created
*
* If successful, adds qual(s) to rel->baserestrictinfo and returns TRUE.
* If no quals available, returns FALSE and doesn't change rel.
*
* Note: check_partial_indexes() must have been run previously.
* ----------
*/
bool create_or_index_quals(PlannerInfo* root, RelOptInfo* rel)
{
BitmapOrPath* bestpath = NULL;
RestrictInfo* bestrinfo = NULL;
List* newrinfos = NIL;
RestrictInfo* or_rinfo = NULL;
Selectivity or_selec, orig_selec;
ListCell* i = NULL;
/* Skip the whole mess if no indexes */
if (rel->indexlist == NIL)
return false;
/*
* Find potentially interesting OR joinclauses. We can use any joinclause
* that is considered safe to move to this rel by the parameterized-path
* machinery, even though what we are going to do with it is not exactly a
* parameterized path.
*/
foreach (i, rel->joininfo) {
RestrictInfo* rinfo = (RestrictInfo*)lfirst(i);
if (restriction_is_or_clause(rinfo) && join_clause_is_movable_to(rinfo, rel->relid)) {
/*
* Use the generate_bitmap_or_paths() machinery to estimate the
* value of each OR clause. We can use regular restriction
* clauses along with the OR clause contents to generate
* indexquals. We pass restriction_only = true so that any
* sub-clauses that are actually joins will be ignored.
*/
List* orpaths = NIL;
ListCell* k = NULL;
orpaths = generate_bitmap_or_paths(root, rel, list_make1(rinfo), rel->baserestrictinfo, true);
if (rel->isPartitionedTable) {
orpaths = list_concat(
orpaths, GenerateBitmapOrPathsUseGPI(root, rel, list_make1(rinfo), rel->baserestrictinfo, true));
}
/* Locate the cheapest OR path */
foreach (k, orpaths) {
BitmapOrPath* path = (BitmapOrPath*)lfirst(k);
AssertEreport(IsA(path, BitmapOrPath), MOD_OPT, "Restriction information is incorrect");
if (bestpath == NULL || path->path.total_cost < bestpath->path.total_cost) {
bestpath = path;
bestrinfo = rinfo;
}
}
}
}
/* Fail if no suitable clauses found */
if (bestpath == NULL)
return false;
/*
* Convert the path's indexclauses structure to a RestrictInfo tree. We
* include any partial-index predicates so as to get a reasonable
* representation of what the path is actually scanning.
*/
newrinfos = make_restrictinfo_from_bitmapqual((Path*)bestpath, true, true);
/* It's possible we get back something other than a single OR clause */
if (list_length(newrinfos) != 1)
return false;
or_rinfo = (RestrictInfo*)linitial(newrinfos);
AssertEreport(IsA(or_rinfo, RestrictInfo), MOD_OPT, "Restriction clause does not contain OR");
if (!restriction_is_or_clause(or_rinfo))
return false;
/*
* OK, add it to the rel's restriction list.
*/
rel->baserestrictinfo = list_concat(rel->baserestrictinfo, newrinfos);
rel->baserestrict_min_security = Min(rel->baserestrict_min_security, or_rinfo->security_level);
/*
* Adjust the original OR clause's cached selectivity to compensate for
* the selectivity of the added (but redundant) lower-level qual. This
* should result in the join rel getting approximately the same rows
* estimate as it would have gotten without all these shenanigans. (XXX
* major hack alert ... this depends on the assumption that the
* selectivity will stay cached ...)
* we don't need cache the selectivity because the index's selectivity is not accurate.
*/
or_selec = clause_selectivity(root, (Node*)or_rinfo, 0, JOIN_INNER, NULL, false);
if (or_selec > 0 && or_selec < 1) {
orig_selec = clause_selectivity(root, (Node*)bestrinfo, 0, JOIN_INNER, NULL, false);
bestrinfo->norm_selec = orig_selec / or_selec;
/* clamp result to sane range */
if (bestrinfo->norm_selec > 1)
bestrinfo->norm_selec = 1;
/* It isn't an outer join clause, so no need to adjust outer_selec */
}
/* Tell caller to recompute partial index status and rowcount estimate */
return true;
}

View File

@ -27,6 +27,7 @@
#include "parser/parse_hint.h"
#include "pgxc/pgxc.h"
#include "optimizer/cost.h"
#include "optimizer/orclauses.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/placeholder.h"
@ -236,6 +237,12 @@ void query_planner(PlannerInfo* root, List* tlist, double tuple_fraction, double
*/
add_placeholders_to_base_rels(root);
/*
* Look for join OR clauses that we can extract single-relation
* restriction OR clauses from.
*/
extract_restriction_or_clauses(root);
/*
* We should now have size estimates for every actual table involved in
* the query, and we also know which if any have been deleted from the

View File

@ -20,11 +20,11 @@ endif
SUBDIRS = learn
ifeq ($(enable_multiple_nodes), yes)
OBJS = clauses.o joininfo.o pathnode.o placeholder.o plancat.o predtest.o \
OBJS = clauses.o joininfo.o orclauses.o pathnode.o placeholder.o plancat.o predtest.o \
relnode.o restrictinfo.o tlist.o var.o pruning.o randomplan.o optimizerdebug.o planmem_walker.o \
nodegroups.o plananalyzer.o optcommon.o dataskew.o autoanalyzer.o bucketinfo.o bucketpruning.o
else
OBJS = clauses.o joininfo.o pathnode.o placeholder.o plancat.o predtest.o \
OBJS = clauses.o joininfo.o orclauses.o pathnode.o placeholder.o plancat.o predtest.o \
relnode.o restrictinfo.o tlist.o var.o pgxcship_single.o pruning.o randomplan.o optimizerdebug.o planmem_walker.o \
nodegroups.o plananalyzer.o optcommon.o dataskew.o autoanalyzer.o bucketinfo.o bucketpruning.o
endif

View File

@ -0,0 +1,332 @@
/*-------------------------------------------------------------------------
*
* orclauses.cpp
* Routines to extract restriction OR clauses from join OR clauses
*
* Portions Copyright (c) 1996-2013, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
* Portions Copyright (c) 2020 Huawei Technologies Co.,Ltd.
*
*
* IDENTIFICATION
* src/gausskernel/optimizer/util/orclauses.cpp
*
* -------------------------------------------------------------------------
*/
#include "postgres.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/orclauses.h"
#include "optimizer/restrictinfo.h"
static bool is_safe_restriction_clause_for(RestrictInfo* rinfo, RelOptInfo* rel);
static Expr* extract_or_clause(RestrictInfo* or_rinfo, RelOptInfo* rel);
static void consider_new_or_clause(PlannerInfo* root, RelOptInfo* rel, Expr* orclause, RestrictInfo* join_or_rinfo);
/*
* extract_restriction_or_clauses
* Examine join OR-of-AND clauses to see if any useful restriction OR
* clauses can be extracted. If so, add them to the query.
*
* Although a join clause must reference multiple relations overall,
* an OR of ANDs clause might contain sub-clauses that reference just one
* relation and can be used to build a restriction clause for that rel.
* For example consider
* WHERE ((a.x = 42 AND b.y = 43) OR (a.x = 44 AND b.z = 45));
* We can transform this into
* WHERE ((a.x = 42 AND b.y = 43) OR (a.x = 44 AND b.z = 45))
* AND (a.x = 42 OR a.x = 44)
* AND (b.y = 43 OR b.z = 45);
* which allows the latter clauses to be applied during the scans of a and b,
* perhaps as index qualifications, and in any case reducing the number of
* rows arriving at the join. In essence this is a partial transformation to
* CNF (AND of ORs format). It is not complete, however, because we do not
* unravel the original OR --- doing so would usually bloat the qualification
* expression to little gain.
*
* The added quals are partially redundant with the original OR, and therefore
* would cause the size of the joinrel to be underestimated when it is finally
* formed. (This would be true of a full transformation to CNF as well; the
* fault is not really in the transformation, but in clauselist_selectivity's
* inability to recognize redundant conditions.) We can compensate for this
* redundancy by changing the cached selectivity of the original OR clause,
* cancelling out the (valid) reduction in the estimated sizes of the base
* relations so that the estimated joinrel size remains the same. This is
* a MAJOR HACK: it depends on the fact that clause selectivities are cached
* and on the fact that the same RestrictInfo node will appear in every
* joininfo list that might be used when the joinrel is formed.
* And it doesn't work in cases where the size estimation is nonlinear
* (i.e., outer and IN joins). But it beats not doing anything.
*
* We examine each base relation to see if join clauses associated with it
* contain extractable restriction conditions. If so, add those conditions
* to the rel's baserestrictinfo and update the cached selectivities of the
* join clauses. Note that the same join clause will be examined afresh
* from the point of view of each baserel that participates in it, so its
* cached selectivity may get updated multiple times.
*/
void extract_restriction_or_clauses(PlannerInfo* root)
{
/* Examine each baserel for potential join OR clauses */
for (int rti = 1; rti < root->simple_rel_array_size; rti++) {
RelOptInfo* rel = root->simple_rel_array[rti];
ListCell* lc = NULL;
/* there may be empty slots corresponding to non-baserel RTEs */
if (rel == NULL) {
continue;
}
Assert(rel->relid == (uint)rti); /* sanity check on array */
/* ignore RTEs that are "other rels" */
if (rel->reloptkind != RELOPT_BASEREL) {
continue;
}
/*
* Find potentially interesting OR joinclauses. We can use any
* joinclause that is considered safe to move to this rel by the
* parameterized-path machinery, even though what we are going to do
* with it is not exactly a parameterized path.
*
* However, it seems best to ignore clauses that have been marked
* redundant (by setting norm_selec > 1). That likely can't happen
* for OR clauses, but let's be safe.
*/
foreach (lc, rel->joininfo) {
RestrictInfo* rinfo = (RestrictInfo*)lfirst(lc);
if (restriction_is_or_clause(rinfo) && join_clause_is_movable_to(rinfo, rel->relid) &&
rinfo->norm_selec <= 1) {
/* Try to extract a qual for this rel only */
Expr* orclause = extract_or_clause(rinfo, rel);
/*
* If successful, decide whether we want to use the clause,
* and insert it into the rel's restrictinfo list if so.
*/
if (orclause) {
consider_new_or_clause(root, rel, orclause, rinfo);
}
}
}
}
}
/*
* Is the given primitive (non-OR) RestrictInfo safe to move to the rel?
*/
static bool is_safe_restriction_clause_for(RestrictInfo* rinfo, RelOptInfo* rel)
{
/*
* We want clauses that mention the rel, and only the rel. So in
* particular pseudoconstant clauses can be rejected quickly. Then check
* the clause's Var membership.
*/
if (rinfo->pseudoconstant) {
return false;
}
if (!bms_equal(rinfo->clause_relids, rel->relids)) {
return false;
}
/* We don't want extra evaluations of any volatile functions */
if (contain_volatile_functions((Node*)rinfo->clause)) {
return false;
}
return true;
}
/*
* Try to extract a restriction clause mentioning only "rel" from the given
* join OR-clause.
*
* We must be able to extract at least one qual for this rel from each of
* the arms of the OR, else we can't use it.
*
* Returns an OR clause (not a RestrictInfo!) pertaining to rel, or NULL
* if no OR clause could be extracted.
*/
static Expr* extract_or_clause(RestrictInfo* or_rinfo, RelOptInfo* rel)
{
List* clauselist = NIL;
ListCell* lc = NULL;
/*
* Scan each arm of the input OR clause. Notice we descend into
* or_rinfo->orclause, which has RestrictInfo nodes embedded below the
* toplevel OR/AND structure. This is useful because we can use the info
* in those nodes to make is_safe_restriction_clause_for()'s checks
* cheaper. We'll strip those nodes from the returned tree, though,
* meaning that fresh ones will be built if the clause is accepted as a
* restriction clause. This might seem wasteful --- couldn't we re-use
* the existing RestrictInfos? But that'd require assuming that
* selectivity and other cached data is computed exactly the same way for
* a restriction clause as for a join clause, which seems undesirable.
*/
Assert(or_clause((Node*)or_rinfo->orclause));
foreach (lc, ((BoolExpr*)or_rinfo->orclause)->args) {
Node* orarg = (Node*)lfirst(lc);
List* subclauses = NIL;
Node* subclause = NULL;
/* OR arguments should be ANDs or sub-RestrictInfos */
if (and_clause(orarg)) {
List* andargs = ((BoolExpr*)orarg)->args;
ListCell* lc2 = NULL;
foreach (lc2, andargs) {
RestrictInfo* rinfo = (RestrictInfo*)lfirst(lc2);
Assert(IsA(rinfo, RestrictInfo));
if (restriction_is_or_clause(rinfo)) {
/*
* Recurse to deal with nested OR. Note we *must* recurse
* here, this isn't just overly-tense optimization: we
* have to descend far enough to find and strip all
* RestrictInfos in the expression.
*/
Expr* suborclause = NULL;
suborclause = extract_or_clause(rinfo, rel);
if (suborclause) {
subclauses = lappend(subclauses, suborclause);
}
} else if (is_safe_restriction_clause_for(rinfo, rel)) {
subclauses = lappend(subclauses, rinfo->clause);
}
}
} else {
Assert(IsA(orarg, RestrictInfo));
Assert(!restriction_is_or_clause((RestrictInfo*)orarg));
if (is_safe_restriction_clause_for((RestrictInfo*)orarg, rel)) {
subclauses = lappend(subclauses, ((RestrictInfo*)orarg)->clause);
}
}
/*
* If nothing could be extracted from this arm, we can't do anything
* with this OR clause.
*/
if (subclauses == NIL) {
return NULL;
}
/*
* OK, add subclause(s) to the result OR. If we found more than one,
* we need an AND node. But if we found only one, and it is itself an
* OR node, add its subclauses to the result instead; this is needed
* to preserve AND/OR flatness (ie, no OR directly underneath OR).
*/
clauselist = lappend(clauselist, make_ands_explicit(subclauses));
subclause = (Node*)make_ands_explicit(subclauses);
if (or_clause(subclause)) {
clauselist = list_concat(clauselist, list_copy(((BoolExpr*)subclause)->args));
} else {
clauselist = lappend(clauselist, subclause);
}
}
/*
* If we got a restriction clause from every arm, wrap them up in an OR
* node. (In theory the OR node might be unnecessary, if there was only
* one arm --- but then the input OR node was also redundant.)
*/
if (clauselist != NIL) {
return make_orclause(clauselist);
}
return NULL;
}
/*
* Consider whether a successfully-extracted restriction OR clause is
* actually worth using. If so, add it to the planner's data structures,
* and adjust the original join clause (join_or_rinfo) to compensate.
*/
static void consider_new_or_clause(PlannerInfo* root, RelOptInfo* rel, Expr* orclause, RestrictInfo* join_or_rinfo)
{
RestrictInfo* or_rinfo = NULL;
Selectivity or_selec, orig_selec;
/*
* Build a RestrictInfo from the new OR clause. We can assume it's valid
* as a base restriction clause.
*/
or_rinfo = make_restrictinfo(orclause, true, false, false, join_or_rinfo->security_level, NULL, NULL, NULL);
/*
* Estimate its selectivity. (We could have done this earlier, but doing
* it on the RestrictInfo representation allows the result to get cached,
* saving work later.)
*/
or_selec = clause_selectivity(root, (Node*)or_rinfo, 0, JOIN_INNER, NULL);
/*
* The clause is only worth adding to the query if it rejects a useful
* fraction of the base relation's rows; otherwise, it's just going to
* cause duplicate computation (since we will still have to check the
* original OR clause when the join is formed). Somewhat arbitrarily, we
* set the selectivity threshold at 0.9.
*/
if (or_selec > 0.9) {
return; /* forget it */
}
/*
* OK, add it to the rel's restriction-clause list.
*/
rel->baserestrictinfo = lappend(rel->baserestrictinfo, or_rinfo);
/*
* Adjust the original join OR clause's cached selectivity to compensate
* for the selectivity of the added (but redundant) lower-level qual. This
* should result in the join rel getting approximately the same rows
* estimate as it would have gotten without all these shenanigans.
*
* XXX major hack alert: this depends on the assumption that the
* selectivity will stay cached.
*
* XXX another major hack: we adjust only norm_selec, the cached
* selectivity for JOIN_INNER semantics, even though the join clause
* might've been an outer-join clause. This is partly because we can't
* easily identify the relevant SpecialJoinInfo here, and partly because
* the linearity assumption we're making would fail anyway. (If it is an
* outer-join clause, "rel" must be on the nullable side, else we'd not
* have gotten here. So the computation of the join size is going to be
* quite nonlinear with respect to the size of "rel", so it's not clear
* how we ought to adjust outer_selec even if we could compute its
* original value correctly.)
*/
if (or_selec > 0) {
SpecialJoinInfo sjinfo;
/*
* Make up a SpecialJoinInfo for JOIN_INNER semantics. (Compare
* approx_tuple_count() in costsize.c.)
*/
sjinfo.type = T_SpecialJoinInfo;
sjinfo.min_lefthand = bms_difference(join_or_rinfo->clause_relids, rel->relids);
sjinfo.min_righthand = rel->relids;
sjinfo.syn_lefthand = sjinfo.min_lefthand;
sjinfo.syn_righthand = sjinfo.min_righthand;
sjinfo.jointype = JOIN_INNER;
/* we don't bother trying to make the remaining fields valid */
sjinfo.lhs_strict = false;
sjinfo.delay_upper_joins = false;
sjinfo.join_quals = NIL;
/* Compute inner-join size */
orig_selec = clause_selectivity(root, (Node*)join_or_rinfo, 0, JOIN_INNER, &sjinfo);
/* And hack cached selectivity so join size remains the same */
join_or_rinfo->norm_selec = orig_selec / or_selec;
/* ensure result stays in sane range, in particular not "redundant" */
if (join_or_rinfo->norm_selec > 1) {
join_or_rinfo->norm_selec = 1;
}
/* as explained above, we don't touch outer_selec */
}
}

View File

@ -0,0 +1,21 @@
/*-------------------------------------------------------------------------
*
* orclauses.h
* prototypes for orclauses.cpp.
*
*
* Portions Copyright (c) 1996-2013, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/include/optimizer/orclauses.h
*
*-------------------------------------------------------------------------
*/
#ifndef ORCLAUSES_H
#define ORCLAUSES_H
#include "nodes/relation.h"
extern void extract_restriction_or_clauses(PlannerInfo *root);
#endif /* ORCLAUSES_H */

View File

@ -56,13 +56,6 @@ inline bool CheckIndexPathUseGPI(IndexPath* ipath)
return ipath->indexinfo->isGlobal;
}
/*
* orindxpath.c
* additional routines for indexable OR clauses
*/
extern bool create_or_index_quals(PlannerInfo* root, RelOptInfo* rel);
/*
* tidpath.h
* routines to generate tid paths

View File

@ -3641,15 +3641,16 @@ INSERT INTO pbe_prunning_002 values (1, 1, 1);
SET enable_pbe_optimization to false;
PREPARE pa AS SELECT * FROM pbe_prunning_001 pp1 RIGHT OUTER JOIN pbe_prunning_002 pp2 ON pp1.c_int=pp2.c_int WHERE (pp1.c_int=$1 AND pp1.c_numeric=$2 AND pp2.c_int=$3 AND pp2.c_numeric=$4) or pp1.id=$5;
EXPLAIN(COSTS FALSE) EXECUTE pa(10,10,10,10,11);
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------------------------
Hash Join
Hash Cond: (pp1.c_int = pp2.c_int)
Hash Cond: (pp2.c_int = pp1.c_int)
Join Filter: (((pp1.c_int = 10) AND (pp1.c_numeric = 10::numeric) AND (pp2.c_int = 10) AND (pp2.c_numeric = 10::numeric)) OR (pp1.id = 11))
-> Seq Scan on pbe_prunning_001 pp1
-> Seq Scan on pbe_prunning_002 pp2
-> Hash
-> Seq Scan on pbe_prunning_002 pp2
(6 rows)
-> Seq Scan on pbe_prunning_001 pp1
Filter: (((c_int = 10) AND (c_numeric = 10::numeric)) OR ((c_int = 10) AND (c_numeric = 10::numeric)) OR (id = 11) OR (id = 11))
(7 rows)
DEALLOCATE PREPARE pa;
DROP TABLE pbe_prunning_001;

View File

@ -3639,15 +3639,16 @@ INSERT INTO pbe_prunning_001 values (1, 1, 1);
INSERT INTO pbe_prunning_002 values (1, 1, 1);
PREPARE pa AS SELECT * FROM pbe_prunning_001 pp1 RIGHT OUTER JOIN pbe_prunning_002 pp2 ON pp1.c_int=pp2.c_int WHERE (pp1.c_int=$1 AND pp1.c_numeric=$2 AND pp2.c_int=$3 AND pp2.c_numeric=$4) or pp1.id=$5;
EXPLAIN(COSTS FALSE) EXECUTE pa(10,10,10,10,11);
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------
QUERY PLAN
------------------------------------------------------------------------------------------------------------------------------
Hash Join
Hash Cond: (pp1.c_int = pp2.c_int)
Hash Cond: (pp2.c_int = pp1.c_int)
Join Filter: (((pp1.c_int = $1) AND (pp1.c_numeric = $2) AND (pp2.c_int = $3) AND (pp2.c_numeric = $4)) OR (pp1.id = $5))
-> Seq Scan on pbe_prunning_001 pp1
-> Seq Scan on pbe_prunning_002 pp2
-> Hash
-> Seq Scan on pbe_prunning_002 pp2
(6 rows)
-> Seq Scan on pbe_prunning_001 pp1
Filter: (((c_int = $1) AND (c_numeric = $2)) OR ((c_int = $1) AND (c_numeric = $2)) OR (id = $5) OR (id = $5))
(7 rows)
DEALLOCATE PREPARE pa;
DROP TABLE pbe_prunning_001;

View File

@ -2668,6 +2668,10 @@ order by c.name;
(3 rows)
rollback;
analyse int4_tbl;
analyse int8_tbl;
analyse tenk1;
analyse text_tbl;
--
-- test incorrect handling of placeholders that only appear in targetlists,
-- per bug #6154
@ -2724,18 +2728,17 @@ SELECT qq, unique1
( SELECT COALESCE(q2, -1) AS qq FROM int8_tbl b ) AS ss2
USING (qq)
INNER JOIN tenk1 c ON qq = unique2;
QUERY PLAN
--------------------------------------------------------------------------------------------------
Hash Join
Hash Cond: (COALESCE((COALESCE(a.q1, 0::bigint)), (COALESCE(b.q2, (-1)::bigint))) = c.unique2)
QUERY PLAN
-------------------------------------------------------------------------------------------------------
Nested Loop
-> Hash Full Join
Hash Cond: (COALESCE(a.q1, 0::bigint) = COALESCE(b.q2, (-1)::bigint))
-> Seq Scan on int8_tbl a
-> Hash
-> Seq Scan on int8_tbl b
-> Hash
-> Seq Scan on tenk1 c
(9 rows)
-> Index Scan using tenk1_unique2 on tenk1 c
Index Cond: (unique2 = COALESCE((COALESCE(a.q1, 0::bigint)), (COALESCE(b.q2, (-1)::bigint))))
(8 rows)
SELECT qq, unique1
FROM
@ -2767,12 +2770,12 @@ order by 1,2;
-----------------------------------------------------------
Sort
Sort Key: t1.q1, t1.q2
-> Hash Left Join
Hash Cond: (t1.q2 = t2.q1)
-> Hash Right Join
Hash Cond: (t2.q1 = t1.q2)
Filter: (1 = (SubPlan 1))
-> Seq Scan on int8_tbl t1
-> Seq Scan on int8_tbl t2
-> Hash
-> Seq Scan on int8_tbl t2
-> Seq Scan on int8_tbl t1
SubPlan 1
-> Limit
-> Result
@ -2869,23 +2872,23 @@ select * from
int4(sin(1)) q1,
int4(sin(0)) q2
where q1 = thousand or q2 = thousand;
QUERY PLAN
------------------------------------------------------------------------------
QUERY PLAN
------------------------------------------------------------------------
Hash Join
Hash Cond: (int4_tbl.f1 = tenk1.twothousand)
-> Seq Scan on int4_tbl
-> Hash
Hash Cond: (tenk1.twothousand = int4_tbl.f1)
-> Nested Loop
-> Nested Loop
-> Nested Loop
-> Function Scan on q1
-> Function Scan on q2
-> Bitmap Heap Scan on tenk1
Recheck Cond: ((q1.q1 = thousand) OR (q2.q2 = thousand))
-> BitmapOr
-> Bitmap Index Scan on tenk1_thous_tenthous
Index Cond: (q1.q1 = thousand)
-> Bitmap Index Scan on tenk1_thous_tenthous
Index Cond: (q2.q2 = thousand)
-> Function Scan on q1
-> Function Scan on q2
-> Bitmap Heap Scan on tenk1
Recheck Cond: ((q1.q1 = thousand) OR (q2.q2 = thousand))
-> BitmapOr
-> Bitmap Index Scan on tenk1_thous_tenthous
Index Cond: (q1.q1 = thousand)
-> Bitmap Index Scan on tenk1_thous_tenthous
Index Cond: (q2.q2 = thousand)
-> Hash
-> Seq Scan on int4_tbl
(15 rows)
explain (num_nodes off, nodes off, costs off)
@ -2894,22 +2897,81 @@ select * from
int4(sin(1)) q1,
int4(sin(0)) q2
where thousand = (q1 + q2);
QUERY PLAN
--------------------------------------------------------------------
QUERY PLAN
--------------------------------------------------------------
Hash Join
Hash Cond: (int4_tbl.f1 = tenk1.twothousand)
-> Seq Scan on int4_tbl
-> Hash
Hash Cond: (tenk1.twothousand = int4_tbl.f1)
-> Nested Loop
-> Nested Loop
-> Nested Loop
-> Function Scan on q1
-> Function Scan on q2
-> Bitmap Heap Scan on tenk1
Recheck Cond: (thousand = (q1.q1 + q2.q2))
-> Bitmap Index Scan on tenk1_thous_tenthous
Index Cond: (thousand = (q1.q1 + q2.q2))
-> Function Scan on q1
-> Function Scan on q2
-> Bitmap Heap Scan on tenk1
Recheck Cond: (thousand = (q1.q1 + q2.q2))
-> Bitmap Index Scan on tenk1_thous_tenthous
Index Cond: (thousand = (q1.q1 + q2.q2))
-> Hash
-> Seq Scan on int4_tbl
(12 rows)
--
-- test extraction of restriction OR clauses from join OR clause
-- (we used to only do this for indexable clauses)
--
explain (costs off)
select * from tenk1 a join tenk1 b on
(a.unique1 = 1 and b.unique1 = 2) or (a.unique2 = 3 and b.hundred = 4);
QUERY PLAN
-------------------------------------------------------------------------------------------------
Nested Loop
Join Filter: (((a.unique1 = 1) AND (b.unique1 = 2)) OR ((a.unique2 = 3) AND (b.hundred = 4)))
-> Seq Scan on tenk1 b
Filter: ((unique1 = 2) OR (unique1 = 2) OR (hundred = 4) OR (hundred = 4))
-> Bitmap Heap Scan on tenk1 a
Recheck Cond: ((unique1 = 1) OR (unique2 = 3))
-> BitmapOr
-> Bitmap Index Scan on tenk1_unique1
Index Cond: (unique1 = 1)
-> Bitmap Index Scan on tenk1_unique2
Index Cond: (unique2 = 3)
(11 rows)
explain (costs off)
select * from tenk1 a join tenk1 b on
(a.unique1 = 1 and b.unique1 = 2) or (a.unique2 = 3 and b.ten = 4);
QUERY PLAN
---------------------------------------------------------------------------------------------
Nested Loop
Join Filter: (((a.unique1 = 1) AND (b.unique1 = 2)) OR ((a.unique2 = 3) AND (b.ten = 4)))
-> Seq Scan on tenk1 b
Filter: ((unique1 = 2) OR (unique1 = 2) OR (ten = 4) OR (ten = 4))
-> Bitmap Heap Scan on tenk1 a
Recheck Cond: ((unique1 = 1) OR (unique2 = 3))
-> BitmapOr
-> Bitmap Index Scan on tenk1_unique1
Index Cond: (unique1 = 1)
-> Bitmap Index Scan on tenk1_unique2
Index Cond: (unique2 = 3)
(11 rows)
explain (costs off)
select * from tenk1 a join tenk1 b on
(a.unique1 = 1 and b.unique1 = 2) or
((a.unique2 = 3 or a.unique2 = 7) and b.hundred = 4);
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------
Nested Loop
Join Filter: (((a.unique1 = 1) AND (b.unique1 = 2)) OR (((a.unique2 = 3) OR (a.unique2 = 7)) AND (b.hundred = 4)))
-> Seq Scan on tenk1 a
-> Materialize
-> Bitmap Heap Scan on tenk1 b
Recheck Cond: ((unique1 = 2) OR (hundred = 4))
-> BitmapOr
-> Bitmap Index Scan on tenk1_unique1
Index Cond: (unique1 = 2)
-> Bitmap Index Scan on tenk1_hundred
Index Cond: (hundred = 4)
(11 rows)
--
-- test ability to generate a suitable plan for a star-schema query
--
@ -2917,21 +2979,17 @@ explain (costs off)
select * from
tenk1, int8_tbl a, int8_tbl b
where thousand = a.q1 and tenthous = b.q1 and a.q2 = 1 and b.q2 = 2;
QUERY PLAN
-------------------------------------------------------------
Hash Join
Hash Cond: (tenk1.tenthous = b.q1)
QUERY PLAN
---------------------------------------------------------------------
Nested Loop
-> Seq Scan on int8_tbl b
Filter: (q2 = 2)
-> Nested Loop
-> Seq Scan on int8_tbl a
Filter: (q2 = 1)
-> Bitmap Heap Scan on tenk1
Recheck Cond: (thousand = a.q1)
-> Bitmap Index Scan on tenk1_thous_tenthous
Index Cond: (thousand = a.q1)
-> Hash
-> Seq Scan on int8_tbl b
Filter: (q2 = 2)
(12 rows)
-> Index Scan using tenk1_thous_tenthous on tenk1
Index Cond: ((thousand = a.q1) AND (tenthous = b.q1))
(8 rows)
--
-- test a corner case in which we shouldn't apply the star-schema optimization
@ -2949,24 +3007,23 @@ select t1.unique2, t1.stringu1, t2.unique1, t2.stringu2 from
left join tenk1 t2
on (subq1.y1 = t2.unique1)
where t1.unique2 < 42 and t1.stringu1 > t2.stringu2;
QUERY PLAN
----------------------------------------------------------------------------------
Hash Join
Hash Cond: (i1.f1 = "*VALUES*".column2)
-> Seq Scan on int4_tbl i1
-> Hash
QUERY PLAN
----------------------------------------------------------------------------
Nested Loop
Join Filter: (t1.stringu1 > t2.stringu2)
-> Nested Loop
Join Filter: ("*VALUES*".column2 = i1.f1)
-> Nested Loop
Join Filter: (t1.stringu1 > t2.stringu2)
-> Nested Loop
-> Nested Loop
Join Filter: ("*VALUES*".column1 = "*VALUES*".column2)
-> Values Scan on "*VALUES*"
-> Values Scan on "*VALUES*"
-> Index Scan using tenk1_unique2 on tenk1 t1
Index Cond: ((unique2 = (11)) AND (unique2 < 42))
-> Index Scan using tenk1_unique1 on tenk1 t2
Index Cond: (unique1 = "*VALUES*".column1)
(15 rows)
Join Filter: ("*VALUES*".column1 = "*VALUES*".column2)
-> Values Scan on "*VALUES*"
-> Values Scan on "*VALUES*"
-> Index Scan using tenk1_unique2 on tenk1 t1
Index Cond: ((unique2 = (11)) AND (unique2 < 42))
-> Seq Scan on int4_tbl i1
-> Index Scan using tenk1_unique1 on tenk1 t2
Index Cond: (unique1 = "*VALUES*".column1)
(14 rows)
select t1.unique2, t1.stringu1, t2.unique1, t2.stringu2 from
tenk1 t1
@ -3033,24 +3090,23 @@ select count(*) from
tenk1 a join tenk1 b on a.unique1 = b.unique2
left join tenk1 c on a.unique2 = b.unique1 and c.thousand = a.thousand
join int4_tbl on b.thousand = f1;
QUERY PLAN
-------------------------------------------------------------------------------
QUERY PLAN
-------------------------------------------------------------------------
Aggregate
-> Hash Join
Hash Cond: (b.thousand = int4_tbl.f1)
-> Hash Left Join
Hash Cond: (a.thousand = c.thousand)
Join Filter: (a.unique2 = b.unique1)
-> Hash Join
Hash Cond: (a.unique1 = b.unique2)
-> Seq Scan on tenk1 a
-> Hash
-> Seq Scan on tenk1 b
-> Hash
-> Index Only Scan using tenk1_thous_tenthous on tenk1 c
-> Hash
-> Seq Scan on int4_tbl
(15 rows)
-> Nested Loop Left Join
Join Filter: (a.unique2 = b.unique1)
-> Nested Loop
-> Nested Loop
-> Seq Scan on int4_tbl
-> Bitmap Heap Scan on tenk1 b
Recheck Cond: (thousand = int4_tbl.f1)
-> Bitmap Index Scan on tenk1_thous_tenthous
Index Cond: (thousand = int4_tbl.f1)
-> Index Scan using tenk1_unique1 on tenk1 a
Index Cond: (unique1 = b.unique2)
-> Index Only Scan using tenk1_thous_tenthous on tenk1 c
Index Cond: (thousand = a.thousand)
(14 rows)
select count(*) from
tenk1 a join tenk1 b on a.unique1 = b.unique2
@ -3068,29 +3124,24 @@ select b.unique1 from
join int4_tbl i1 on b.thousand = f1
right join int4_tbl i2 on i2.f1 = b.tenthous
order by 1;
QUERY PLAN
-------------------------------------------------------------------------------------
QUERY PLAN
-----------------------------------------------------------------------------------------
Sort
Sort Key: b.unique1
-> Hash Right Join
Hash Cond: (b.tenthous = i2.f1)
-> Hash Join
Hash Cond: (b.thousand = i1.f1)
-> Hash Left Join
Hash Cond: (a.thousand = c.thousand)
Join Filter: (b.unique1 = 42)
-> Hash Join
Hash Cond: (a.unique1 = b.unique2)
-> Seq Scan on tenk1 a
-> Hash
-> Seq Scan on tenk1 b
-> Hash
-> Index Only Scan using tenk1_thous_tenthous on tenk1 c
-> Hash
-> Seq Scan on int4_tbl i1
-> Hash
-> Seq Scan on int4_tbl i2
(20 rows)
-> Nested Loop Left Join
-> Seq Scan on int4_tbl i2
-> Nested Loop Left Join
Join Filter: (b.unique1 = 42)
-> Nested Loop
-> Nested Loop
-> Seq Scan on int4_tbl i1
-> Index Scan using tenk1_thous_tenthous on tenk1 b
Index Cond: ((thousand = i1.f1) AND (i2.f1 = tenthous))
-> Index Scan using tenk1_unique1 on tenk1 a
Index Cond: (unique1 = b.unique2)
-> Index Only Scan using tenk1_thous_tenthous on tenk1 c
Index Cond: (thousand = a.thousand)
(15 rows)
select b.unique1 from
tenk1 a join tenk1 b on a.unique1 = b.unique2
@ -3117,13 +3168,12 @@ select q1, unique2, thousand, hundred
where coalesce(thousand,123) = q1 and q1 = coalesce(hundred,123);
QUERY PLAN
--------------------------------------------------------------------------------------
Hash Left Join
Hash Cond: (a.q1 = b.unique2)
Nested Loop Left Join
Filter: ((COALESCE(b.thousand, 123) = a.q1) AND (a.q1 = COALESCE(b.hundred, 123)))
-> Seq Scan on int8_tbl a
-> Hash
-> Seq Scan on tenk1 b
(6 rows)
-> Index Scan using tenk1_unique2 on tenk1 b
Index Cond: (a.q1 = unique2)
(5 rows)
select q1, unique2, thousand, hundred
from int8_tbl a left join tenk1 b on q1 = unique2
@ -3138,13 +3188,12 @@ select f1, unique2, case when unique2 is null then f1 else 0 end
where (case when unique2 is null then f1 else 0 end) = 0;
QUERY PLAN
--------------------------------------------------------------------
Hash Left Join
Hash Cond: (a.f1 = b.unique2)
Nested Loop Left Join
Filter: (CASE WHEN (b.unique2 IS NULL) THEN a.f1 ELSE 0 END = 0)
-> Seq Scan on int4_tbl a
-> Hash
-> Index Only Scan using tenk1_unique2 on tenk1 b
(6 rows)
-> Index Only Scan using tenk1_unique2 on tenk1 b
Index Cond: (unique2 = a.f1)
(5 rows)
select f1, unique2, case when unique2 is null then f1 else 0 end
from int4_tbl a left join tenk1 b on f1 = unique2
@ -3190,16 +3239,15 @@ select * from
--
explain (num_nodes off, nodes off, costs off)
select * from int4_tbl a left join tenk1 b on f1 = unique2 where f1 = 0;
QUERY PLAN
-------------------------------------------------------
QUERY PLAN
-------------------------------------------------
Nested Loop Left Join
Join Filter: (a.f1 = b.unique2)
-> Seq Scan on int4_tbl a
Filter: (f1 = 0)
-> Materialize
-> Index Scan using tenk1_unique2 on tenk1 b
Index Cond: (unique2 = 0)
(7 rows)
-> Index Scan using tenk1_unique2 on tenk1 b
Index Cond: (unique2 = 0)
(6 rows)
explain (num_nodes off, nodes off, costs off)
select * from tenk1 a full join tenk1 b using(unique2) where unique2 = 42;
@ -3230,15 +3278,15 @@ INSERT INTO c VALUES (0), (1);
INSERT INTO d VALUES (1,3), (2,2), (3,1);
-- all three cases should be optimizable into a simple seqscan
explain (verbose on, costs off, nodes off) SELECT a.* FROM a LEFT JOIN b ON a.b_id = b.id;
--?.*QUERY PLAN.*
--?----------------------------.*
--?.*
--?.*
--? Seq Scan on pg_temp_datanod.*
Output: a.id, a.b_id
(2 rows)
explain (verbose on, costs off, nodes off) SELECT b.* FROM b LEFT JOIN c ON b.c_id = c.id;
--?.*QUERY PLAN.*
--?----------------------------.*
--?.*
--?.*
--? Seq Scan on pg_temp_datanod.*
Output: b.id, b.c_id
(2 rows)
@ -3246,8 +3294,8 @@ explain (verbose on, costs off, nodes off) SELECT b.* FROM b LEFT JOIN c ON b.c_
explain (verbose on, costs off, nodes off)
SELECT a.* FROM a LEFT JOIN (b left join c on b.c_id = c.id)
ON (a.b_id = b.id);
--?QUERY PLAN.*
--?-----------------------------.*
--?.*
--?.*
--? Seq Scan on pg_temp_datanod.*
Output: a.id, a.b_id
(2 rows)
@ -3257,8 +3305,8 @@ explain (verbose on, costs off, nodes off)
select id from a where id in (
select b.id from b left join c on b.id = c.id
);
--?QUERY PLAN.*
--?----------------------------.*
--?.*
--?.*
Hash Join
Output: a.id
Hash Cond: (a.id = b.id)
@ -3275,8 +3323,8 @@ select id from a where id in (
explain (verbose on, costs off, nodes off)
select d.* from d left join (select * from b group by b.id, b.c_id) s
on d.a = s.id and d.b = s.c_id;
--?QUERY PLAN.*
--?----------------------------.*
--?.*
--?.*
--? Seq Scan on pg_temp_datanod.*
Output: d.a, d.b
(2 rows)
@ -3285,8 +3333,8 @@ select d.* from d left join (select * from b group by b.id, b.c_id) s
explain (verbose on, costs off, nodes off)
select d.* from d left join (select distinct * from b) s
on d.a = s.id and d.b = s.c_id;
--?QUERY PLAN.*
--?----------------------------.*
--?.*
--?.*
--? Seq Scan on pg_temp_datanod.*
Output: d.a, d.b
(2 rows)
@ -3296,8 +3344,8 @@ select d.* from d left join (select distinct * from b) s
explain (verbose on, costs off, nodes off)
select d.* from d left join (select * from b group by b.id, b.c_id) s
on d.a = s.id;
--?QUERY PLAN.*
--?----------------------------.*
--?.*
--?.*
Hash Right Join
Output: d.a, d.b
Hash Cond: (b.id = d.a)
@ -3316,8 +3364,8 @@ select d.* from d left join (select * from b group by b.id, b.c_id) s
explain (verbose on, costs off, nodes off)
select d.* from d left join (select distinct * from b) s
on d.a = s.id;
--?QUERY PLAN.*
--?----------------------------.*
--?.*
--?.*
Hash Right Join
Output: d.a, d.b
Hash Cond: (b.id = d.a)
@ -3337,8 +3385,8 @@ select d.* from d left join (select distinct * from b) s
explain (verbose on, costs off, nodes off)
select d.* from d left join (select id from a union select id from b) s
on d.a = s.id;
--?QUERY PLAN.*
--?----------------------------.*
--?.*
--?.*
--? Seq Scan on pg_temp_datanod.*
Output: d.a, d.b
(2 rows)
@ -3347,8 +3395,8 @@ select d.* from d left join (select id from a union select id from b) s
explain (verbose on, costs off, nodes off)
select i8.* from int8_tbl i8 left join (select f1 from int4_tbl group by f1) i4
on i8.q1 = i4.f1;
--?QUERY PLAN.*
--?----------------------------.*
--?.*
--?.*
Seq Scan on public.int8_tbl i8
Output: i8.q1, i8.q2
(2 rows)
@ -3371,8 +3419,8 @@ select p.* from parent p left join child c on (p.k = c.k) order by 1,2;
explain (verbose on, costs off, nodes off)
select p.* from parent p left join child c on (p.k = c.k) order by 1,2;
--?QUERY PLAN.*
--?----------------------------.*
--?.*
--?.*
Sort
Output: p.k, p.pd
Sort Key: p.k, p.pd
@ -3395,8 +3443,8 @@ explain (verbose on, costs off, nodes off)
select p.*, linked from parent p
left join (select c.*, true as linked from child c) as ss
on (p.k = ss.k) order by p.k;
--?QUERY PLAN.*
--?----------------------------.*
--?.*
--?.*
Merge Left Join
Output: p.k, p.pd, (true)
Merge Cond: (p.k = c.k)
@ -3418,8 +3466,8 @@ explain (verbose on, costs off, nodes off)
select p.* from
parent p left join child c on (p.k = c.k)
where p.k = 1 and p.k = 2;
--?QUERY PLAN.*
--?----------------.*
--?.*
--?.*
Result
Output: p.k, p.pd
One-Time Filter: false
@ -3519,8 +3567,8 @@ select t1.* from
on (t1.f1 = b1.d1)
left join int4_tbl i4
on (i8.q2 = i4.f1);
--?QUERY PLAN.*
--?----------------------------.*
QUERY PLAN
----------------------------------------------------------------------------
Hash Left Join
Output: t1.f1
Hash Cond: (i8.q2 = i4.f1)
@ -3529,33 +3577,35 @@ select t1.* from
Join Filter: (t1.f1 = '***'::text)
-> Seq Scan on public.text_tbl t1
Output: t1.f1
-> Hash Right Join
-> Materialize
Output: i8.q2
Hash Cond: ((NULL::integer) = i8b1.q2)
-> Hash Right Join
Output: i8.q2, (NULL::integer)
Hash Cond: (i8b2.q1 = i8.q1)
-> Nested Loop
Output: i8b2.q1, NULL::integer
-> Seq Scan on public.int4_tbl i4b2
Output: i4b2.f1
-> Materialize
Output: i8b2.q1
Output: i8.q2
Hash Cond: ((NULL::integer) = i8b1.q2)
-> Hash Right Join
Output: i8.q2, (NULL::integer)
Hash Cond: (i8b2.q1 = i8.q1)
-> Nested Loop
Output: i8b2.q1, NULL::integer
-> Seq Scan on public.int8_tbl i8b2
Output: i8b2.q1
-> Hash
Output: i8.q1, i8.q2
-> Seq Scan on public.int8_tbl i8
Output: i8b2.q1, i8b2.q2
-> Materialize
Output: i4b2.f1
-> Seq Scan on public.int4_tbl i4b2
Output: i4b2.f1
-> Hash
Output: i8.q1, i8.q2
-> Hash
Output: i8b1.q2
-> Seq Scan on public.int8_tbl i8b1
-> Seq Scan on public.int8_tbl i8
Output: i8.q1, i8.q2
-> Hash
Output: i8b1.q2
-> Seq Scan on public.int8_tbl i8b1
Output: i8b1.q2
-> Hash
Output: i4.f1
-> Seq Scan on public.int4_tbl i4
Output: i4.f1
(34 rows)
(36 rows)
select t1.* from
text_tbl t1
@ -3586,8 +3636,8 @@ select t1.* from
on (t1.f1 = b1.d1)
left join int4_tbl i4
on (i8.q2 = i4.f1);
--?QUERY PLAN.*
--?----------------------------.*
QUERY PLAN
----------------------------------------------------------------------------
Hash Left Join
Output: t1.f1
Hash Cond: (i8.q2 = i4.f1)
@ -3596,34 +3646,36 @@ select t1.* from
Join Filter: (t1.f1 = '***'::text)
-> Seq Scan on public.text_tbl t1
Output: t1.f1
-> Hash Right Join
-> Materialize
Output: i8.q2
Hash Cond: ((NULL::integer) = i8b1.q2)
-> Hash Right Join
Output: i8.q2, (NULL::integer)
Hash Cond: (i8b2.q1 = i8.q1)
-> Hash Join
Output: i8b2.q1, NULL::integer
Hash Cond: (i4b2.f1 = i8b2.q1)
-> Seq Scan on public.int4_tbl i4b2
Output: i4b2.f1
-> Hash
Output: i8b2.q1
Output: i8.q2
Hash Cond: ((NULL::integer) = i8b1.q2)
-> Hash Right Join
Output: i8.q2, (NULL::integer)
Hash Cond: (i8b2.q1 = i8.q1)
-> Hash Join
Output: i8b2.q1, NULL::integer
Hash Cond: (i8b2.q1 = i4b2.f1)
-> Seq Scan on public.int8_tbl i8b2
Output: i8b2.q1
-> Hash
Output: i8.q1, i8.q2
-> Seq Scan on public.int8_tbl i8
Output: i8b2.q1, i8b2.q2
-> Hash
Output: i4b2.f1
-> Seq Scan on public.int4_tbl i4b2
Output: i4b2.f1
-> Hash
Output: i8.q1, i8.q2
-> Hash
Output: i8b1.q2
-> Seq Scan on public.int8_tbl i8b1
-> Seq Scan on public.int8_tbl i8
Output: i8.q1, i8.q2
-> Hash
Output: i8b1.q2
-> Seq Scan on public.int8_tbl i8b1
Output: i8b1.q2
-> Hash
Output: i4.f1
-> Seq Scan on public.int4_tbl i4
Output: i4.f1
(35 rows)
(37 rows)
select t1.* from
@ -3672,12 +3724,10 @@ select * from
-> Seq Scan on public.int8_tbl i8
Output: i8.q1, i8.q2
Filter: (i8.q2 = 456)
-> Materialize
-> Seq Scan on public.text_tbl t1
Output: t1.f1
-> Seq Scan on public.text_tbl t1
Output: t1.f1
Filter: (t1.f1 = 'doh!'::text)
(23 rows)
Filter: (t1.f1 = 'doh!'::text)
(21 rows)
select * from
text_tbl t1

View File

@ -39,7 +39,7 @@ group by
l_year
order by
revenue;
QUERY PLAN
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Sort
Sort Key: (sum((lineitem.l_extendedprice * (1::numeric - lineitem.l_discount))))
@ -67,13 +67,15 @@ order by
Join Filter: (((n1.n_name = 'FRANCE '::bpchar) AND (n2.n_name = 'GERMANY'::bpchar)) OR ((n1.n_name = 'GERMANY'::bpchar) AND (n2.n_name = 'FRANCE'::bpchar)))
-> Row Adapter
-> CStore Scan on nation n1
Filter: ((n_name = 'FRANCE '::bpchar) OR (n_name = 'FRANCE '::bpchar) OR (n_name = 'GERMANY'::bpchar) OR (n_name = 'GERMANY'::bpchar))
-> Materialize
-> Row Adapter
-> CStore Scan on nation n2
Filter: ((n_name = 'GERMANY'::bpchar) OR (n_name = 'GERMANY'::bpchar) OR (n_name = 'FRANCE'::bpchar) OR (n_name = 'FRANCE'::bpchar))
-> Hash
-> Row Adapter
-> CStore Scan on supplier
(32 rows)
(34 rows)
select
supp_nation,

View File

@ -39,7 +39,7 @@ group by
l_year
order by
revenue;
QUERY PLAN
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Row Adapter
-> Vector Sort
@ -61,10 +61,12 @@ order by
-> Vector Nest Loop
Join Filter: (((n1.n_name = 'FRANCE '::bpchar) AND (n2.n_name = 'GERMANY'::bpchar)) OR ((n1.n_name = 'GERMANY'::bpchar) AND (n2.n_name = 'FRANCE'::bpchar)))
-> CStore Scan on nation n1
Filter: ((n_name = 'FRANCE '::bpchar) OR (n_name = 'FRANCE '::bpchar) OR (n_name = 'GERMANY'::bpchar) OR (n_name = 'GERMANY'::bpchar))
-> Vector Materialize
-> CStore Scan on nation n2
Filter: ((n_name = 'GERMANY'::bpchar) OR (n_name = 'GERMANY'::bpchar) OR (n_name = 'FRANCE'::bpchar) OR (n_name = 'FRANCE'::bpchar))
-> CStore Scan on supplier
(23 rows)
(25 rows)
select
supp_nation,

View File

@ -722,6 +722,10 @@ order by c.name;
rollback;
analyse int4_tbl;
analyse int8_tbl;
analyse tenk1;
analyse text_tbl;
--
-- test incorrect handling of placeholders that only appear in targetlists,
-- per bug #6154
@ -825,6 +829,22 @@ select * from
int4(sin(0)) q2
where thousand = (q1 + q2);
--
-- test extraction of restriction OR clauses from join OR clause
-- (we used to only do this for indexable clauses)
--
explain (costs off)
select * from tenk1 a join tenk1 b on
(a.unique1 = 1 and b.unique1 = 2) or (a.unique2 = 3 and b.hundred = 4);
explain (costs off)
select * from tenk1 a join tenk1 b on
(a.unique1 = 1 and b.unique1 = 2) or (a.unique2 = 3 and b.ten = 4);
explain (costs off)
select * from tenk1 a join tenk1 b on
(a.unique1 = 1 and b.unique1 = 2) or
((a.unique2 = 3 or a.unique2 = 7) and b.hundred = 4);
--
-- test ability to generate a suitable plan for a star-schema query
--