wangzelin.wzl 93a1074b0c patch 4.0
2022-10-24 17:57:12 +08:00

141 lines
3.5 KiB
Python
Executable File

#!/bin/env python
__author__ = 'dongyun.zdy'
import math
import numpy as np
from scipy.optimize import leastsq
from scipy.optimize import curve_fit
import sys
from lmfit import Model
import getopt
def get_row_size(col):
size = 16
size += col * (3 + 8 + 4 + 8 + 16 + 32 + 64 + 128)
size += col
return size
def round_wasted_spave(rsize, psize):
nr = math.floor(float(psize / rsize))
waste = psize - nr * rsize
return rsize + waste / nr
def get_miss_prob(Nrow, Ncol, Turn):
total_size = Nrow * get_row_size(Ncol)
TLBcovered = Turn
if TLBcovered >= 0.9 * total_size:
hit = 0.9
else:
hit = TLBcovered / total_size
return 1 - hit
def sort_model_form(args,
Tmiss,
Turn
):
(
Nrow,
Ncol,
) = args
total_cost = 0
total_cost += Nrow * Tmiss * Ncol * get_miss_prob(Nrow, Ncol, Turn)
return total_cost
def sort_model_arr(arg_sets,
Tmiss,
Turn,
):
res = []
for single_arg_set in arg_sets:
res.append(sort_model_form(single_arg_set,
Tmiss,
Turn,
))
return np.array(res)
sort_model = Model(sort_model_arr)
sort_model.set_param_hint("Tmiss", min=0.0)
sort_model.set_param_hint("Turn", min=2097152.0, max=2097153.0)
# sort_model.set_param_hint("Tmiss_K2", min=0.0)
def extract_info_from_line(line):
splited = line.split(",")
line_info = []
for item in splited:
line_info.append(float(item))
return line_info
if __name__ == '__main__':
file_name = "miss.prep.1"
out_file_name = "miss.model"
# sys.argv.extend("-i sort.prep.bigint -o sort.model".split(" "))
output_fit_res = False
wrong_arg = False
opts,args = getopt.getopt(sys.argv[1:],"i:o:R:C:")
for op, value in opts:
if "-i" == op:
file_name = value
elif "-o" == op:
output_fit_res = True
out_file_name = value
elif "-R" == op:
MATERIAL_ROW_ONCE = float(value)
elif "-C" == op:
MATERIAL_ROW_COL = float(value)
else:
wrong_arg = True
if wrong_arg:
print "wrong arg"
sys.exit(1)
file = open(file_name, "r")
arg_sets = []
times = []
case_params = []
for line in file:
if line.startswith('#'):
continue
case_param = extract_info_from_line(line)
case_params.append(case_param)
arg_sets.append((case_param[0], case_param[1]))
times.append(case_param[3])
file.close()
arg_sets_np = np.array(arg_sets)
times_np = np.array(times)
#10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0
result = sort_model.fit(times_np, arg_sets=arg_sets_np,
Tmiss=1.0,
Turn=2097152,
)
Tmiss = result.best_values["Tmiss"]
Turn = result.best_values["Turn"]
res_line = str(Tmiss) + ","
res_line += str(Turn)
# res_line += str(result.best_values["Tmiss_K2"])
print result.fit_report()
if output_fit_res:
out_file = open(out_file_name, "w")
out_file.write(res_line)
out_file.close()
for i, args in enumerate(arg_sets):
cost = sort_model_form(args, Tmiss, Turn)
time = times[i]
print "\t".join([str(args), str(time), str(cost)])