148 lines
4.0 KiB
Python
148 lines
4.0 KiB
Python
#!/bin/env python
|
|
__author__ = 'dongyun.zdy'
|
|
|
|
|
|
import math
|
|
import numpy as np
|
|
from scipy.optimize import leastsq
|
|
from scipy.optimize import curve_fit
|
|
import sys
|
|
from lmfit import Model
|
|
import getopt
|
|
|
|
|
|
|
|
def nl_model_form(args,
|
|
Tstartup,
|
|
#Tqual,
|
|
Tres,
|
|
Tfail,
|
|
Tleft_row,
|
|
Tright_row
|
|
):
|
|
(
|
|
Nrow_res,
|
|
Nrow_left,
|
|
Nrow_right,
|
|
Nright_cache_in,
|
|
Nright_cache_out,
|
|
Nright_cache_clear,
|
|
Nequal_cond
|
|
) = args
|
|
|
|
total_cost = Tstartup
|
|
total_cost += Nrow_res * Tres
|
|
#total_cost += Nequal_cond * Tqual
|
|
total_cost += (Nequal_cond - Nrow_res) * Tfail
|
|
total_cost += Nrow_left * Tleft_row
|
|
total_cost += Nrow_right * Tright_row
|
|
|
|
return total_cost
|
|
|
|
eval_count = 0
|
|
|
|
def nl_model_arr(arg_sets,
|
|
Tstartup,
|
|
#Tqual,
|
|
Tres,
|
|
Tfail,
|
|
Tleft_row,
|
|
Tright_row
|
|
):
|
|
res = [nl_model_form(single_arg_set,
|
|
Tstartup,
|
|
#Tqual,
|
|
Tres,
|
|
Tfail,
|
|
Tleft_row,
|
|
Tright_row
|
|
) for single_arg_set in arg_sets]
|
|
global eval_count
|
|
eval_count += 1
|
|
return np.array(res)
|
|
|
|
|
|
nl_model = Model(nl_model_arr)
|
|
nl_model.set_param_hint("Tstartup", min=0.0, max = 50)
|
|
#nl_model.set_param_hint("Tqual", min=0.0)
|
|
nl_model.set_param_hint("Tres", min=0.0)
|
|
nl_model.set_param_hint("Tfail", min=0.0)
|
|
nl_model.set_param_hint("Tleft_row", min=0.0)
|
|
nl_model.set_param_hint("Tright_row", min=0.0)
|
|
|
|
|
|
def extract_info_from_line(line):
|
|
splited = line.split(",")
|
|
line_info = []
|
|
for item in splited:
|
|
line_info.append(float(item))
|
|
return line_info
|
|
|
|
|
|
if __name__ == '__main__':
|
|
file_name = "scan_model.res.formal.prep"
|
|
out_file_name = "scan_model.fit"
|
|
|
|
sys.argv.extend("-i nl.prep -o nl.model".split(" "))
|
|
|
|
output_fit_res = False
|
|
wrong_arg = False
|
|
opts,args = getopt.getopt(sys.argv[1:],"i:o:")
|
|
for op, value in opts:
|
|
if "-i" == op:
|
|
file_name = value
|
|
elif "-o" == op:
|
|
output_fit_res = True
|
|
out_file_name = value
|
|
else:
|
|
wrong_arg = True
|
|
|
|
if wrong_arg:
|
|
print "wrong arg"
|
|
sys.exit(1)
|
|
|
|
file = open(file_name, "r")
|
|
arg_sets = []
|
|
times = []
|
|
case_params = []
|
|
for line in file:
|
|
case_param = extract_info_from_line(line)
|
|
case_params.append(case_param)
|
|
arg_sets.append((case_param[6], #Nrow_res
|
|
case_param[0], #Nrow_left
|
|
case_param[1], #Nrow_right
|
|
case_param[-3], #Nright_cache_in
|
|
case_param[-2], #Nright_cache_out
|
|
case_param[-1], #Nright_cache_clear
|
|
case_param[8] #Nequal_cond
|
|
))
|
|
times.append(case_param[7])
|
|
file.close()
|
|
arg_sets_np = np.array(arg_sets)
|
|
times_np = np.array(times)
|
|
#10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0
|
|
result = nl_model.fit(times_np, arg_sets=arg_sets_np,
|
|
Tstartup=50.0,
|
|
#Tqual=0.1,
|
|
Tres=0.3,
|
|
Tfail=0.3,
|
|
Tleft_row=0.3,
|
|
Tright_row=0.3
|
|
)
|
|
|
|
|
|
res_line = str(result.best_values["Tstartup"]) + ","
|
|
#res_line += str(result.best_values["Tqual"]) + ","
|
|
res_line += str(result.best_values["Tres"]) + ","
|
|
res_line += str(result.best_values["Tfail"]) + ","
|
|
res_line += str(result.best_values["Tleft_row"]) + ","
|
|
res_line += str(result.best_values["Tright_row"])
|
|
|
|
|
|
print result.fit_report()
|
|
|
|
if output_fit_res:
|
|
out_file = open(out_file_name, "w")
|
|
out_file.write(res_line)
|
|
out_file.close()
|