wangzelin.wzl 93a1074b0c patch 4.0
2022-10-24 17:57:12 +08:00

148 lines
4.0 KiB
Python

#!/bin/env python
__author__ = 'dongyun.zdy'
import math
import numpy as np
from scipy.optimize import leastsq
from scipy.optimize import curve_fit
import sys
from lmfit import Model
import getopt
def nl_model_form(args,
Tstartup,
#Tqual,
Tres,
Tfail,
Tleft_row,
Tright_row
):
(
Nrow_res,
Nrow_left,
Nrow_right,
Nright_cache_in,
Nright_cache_out,
Nright_cache_clear,
Nequal_cond
) = args
total_cost = Tstartup
total_cost += Nrow_res * Tres
#total_cost += Nequal_cond * Tqual
total_cost += (Nequal_cond - Nrow_res) * Tfail
total_cost += Nrow_left * Tleft_row
total_cost += Nrow_right * Tright_row
return total_cost
eval_count = 0
def nl_model_arr(arg_sets,
Tstartup,
#Tqual,
Tres,
Tfail,
Tleft_row,
Tright_row
):
res = [nl_model_form(single_arg_set,
Tstartup,
#Tqual,
Tres,
Tfail,
Tleft_row,
Tright_row
) for single_arg_set in arg_sets]
global eval_count
eval_count += 1
return np.array(res)
nl_model = Model(nl_model_arr)
nl_model.set_param_hint("Tstartup", min=0.0, max = 50)
#nl_model.set_param_hint("Tqual", min=0.0)
nl_model.set_param_hint("Tres", min=0.0)
nl_model.set_param_hint("Tfail", min=0.0)
nl_model.set_param_hint("Tleft_row", min=0.0)
nl_model.set_param_hint("Tright_row", min=0.0)
def extract_info_from_line(line):
splited = line.split(",")
line_info = []
for item in splited:
line_info.append(float(item))
return line_info
if __name__ == '__main__':
file_name = "scan_model.res.formal.prep"
out_file_name = "scan_model.fit"
sys.argv.extend("-i nl.prep -o nl.model".split(" "))
output_fit_res = False
wrong_arg = False
opts,args = getopt.getopt(sys.argv[1:],"i:o:")
for op, value in opts:
if "-i" == op:
file_name = value
elif "-o" == op:
output_fit_res = True
out_file_name = value
else:
wrong_arg = True
if wrong_arg:
print "wrong arg"
sys.exit(1)
file = open(file_name, "r")
arg_sets = []
times = []
case_params = []
for line in file:
case_param = extract_info_from_line(line)
case_params.append(case_param)
arg_sets.append((case_param[6], #Nrow_res
case_param[0], #Nrow_left
case_param[1], #Nrow_right
case_param[-3], #Nright_cache_in
case_param[-2], #Nright_cache_out
case_param[-1], #Nright_cache_clear
case_param[8] #Nequal_cond
))
times.append(case_param[7])
file.close()
arg_sets_np = np.array(arg_sets)
times_np = np.array(times)
#10, 0.20406430879623488, 0.016618100054245379, 14.0, 4.5, 37.0, -0.005, 0.5, -7.0
result = nl_model.fit(times_np, arg_sets=arg_sets_np,
Tstartup=50.0,
#Tqual=0.1,
Tres=0.3,
Tfail=0.3,
Tleft_row=0.3,
Tright_row=0.3
)
res_line = str(result.best_values["Tstartup"]) + ","
#res_line += str(result.best_values["Tqual"]) + ","
res_line += str(result.best_values["Tres"]) + ","
res_line += str(result.best_values["Tfail"]) + ","
res_line += str(result.best_values["Tleft_row"]) + ","
res_line += str(result.best_values["Tright_row"])
print result.fit_report()
if output_fit_res:
out_file = open(out_file_name, "w")
out_file.write(res_line)
out_file.close()