Compare commits
36 Commits
customize_
...
classify_f
| Author | SHA1 | Date | |
|---|---|---|---|
| 93b8332555 | |||
| 0f5adfd5cf | |||
| 8a4fb563cd | |||
| 2c1b6416af | |||
| 65c9ec0caf | |||
| 3313d91414 | |||
| 2b88597aee | |||
| e2698f7ae8 | |||
| e9b923a864 | |||
| 7599f86d07 | |||
| fefd44a54c | |||
| c57db57dfd | |||
| baaf84226a | |||
| 64d797efcb | |||
| 3ca94d6d96 | |||
| 262609f91f | |||
| bd5a4034f4 | |||
| a0a070ce3a | |||
| 13b6807441 | |||
| fd13a6b7ec | |||
| c80b1d19b8 | |||
| 7e85411ae3 | |||
| 08deb0d608 | |||
| 910ddcfe22 | |||
| 61d2406de2 | |||
| 892c20b429 | |||
| 9307bf0b76 | |||
| 75e08ab0bf | |||
| dcd3eaabc7 | |||
| 8479d60f55 | |||
| 922bf93706 | |||
| 28b498ea03 | |||
| 9b548be9a6 | |||
| c1d048ac92 | |||
| 7a9191d690 | |||
| ecae353dde |
8
.idea/Dlib_face_recognition_from_camera.iml
generated
@ -1,12 +1,14 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$" />
|
||||
<orderEntry type="inheritedJdk" />
|
||||
<content url="file://$MODULE_DIR$">
|
||||
<sourceFolder url="file://$MODULE_DIR$/data" isTestSource="false" />
|
||||
</content>
|
||||
<orderEntry type="jdk" jdkName="Python 3.7" jdkType="Python SDK" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
<component name="TestRunnerService">
|
||||
<option name="projectConfiguration" value="py.test" />
|
||||
<option name="projectConfiguration" value="pytest" />
|
||||
<option name="PROJECT_TEST_RUNNER" value="py.test" />
|
||||
</component>
|
||||
</module>
|
||||
8
.idea/inspectionProfiles/Project_Default.xml
generated
@ -8,5 +8,13 @@
|
||||
</list>
|
||||
</option>
|
||||
</inspection_tool>
|
||||
<inspection_tool class="PyPep8NamingInspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
|
||||
<option name="ignoredErrors">
|
||||
<list>
|
||||
<option value="N806" />
|
||||
<option value="N802" />
|
||||
</list>
|
||||
</option>
|
||||
</inspection_tool>
|
||||
</profile>
|
||||
</component>
|
||||
2
.idea/misc.xml
generated
@ -1,4 +1,4 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.6" project-jdk-type="Python SDK" />
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.7" project-jdk-type="Python SDK" />
|
||||
</project>
|
||||
426
.idea/workspace.xml
generated
@ -1,10 +1,12 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ChangeListManager">
|
||||
<list default="true" id="39c25e36-24e3-48b8-a41f-0d53e408e855" name="Default" comment="">
|
||||
<list default="true" id="e58b655a-3a9b-4001-b4da-39e07ab46629" name="Default Changelist" comment="">
|
||||
<change beforePath="$PROJECT_DIR$/.idea/Dlib_face_recognition_from_camera.iml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/Dlib_face_recognition_from_camera.iml" afterDir="false" />
|
||||
<change beforePath="$PROJECT_DIR$/.idea/misc.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/misc.xml" afterDir="false" />
|
||||
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
|
||||
<change beforePath="$PROJECT_DIR$/README.rst" beforeDir="false" afterPath="$PROJECT_DIR$/README.rst" afterDir="false" />
|
||||
<change beforePath="$PROJECT_DIR$/face_reco_from_camera.py" beforeDir="false" afterPath="$PROJECT_DIR$/face_reco_from_camera.py" afterDir="false" />
|
||||
<change beforePath="$PROJECT_DIR$/get_faces_from_camera.py" beforeDir="false" afterPath="$PROJECT_DIR$/get_faces_from_camera.py" afterDir="false" />
|
||||
</list>
|
||||
<option name="EXCLUDED_CONVERTED_TO_IGNORED" value="true" />
|
||||
<option name="SHOW_DIALOG" value="false" />
|
||||
@ -12,62 +14,6 @@
|
||||
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
|
||||
<option name="LAST_RESOLUTION" value="IGNORE" />
|
||||
</component>
|
||||
<component name="FileEditorManager">
|
||||
<leaf SIDE_TABS_SIZE_LIMIT_KEY="300">
|
||||
<file pinned="false" current-in-tab="false">
|
||||
<entry file="file://$PROJECT_DIR$/get_faces_from_camera.py">
|
||||
<provider selected="true" editor-type-id="text-editor">
|
||||
<state relative-caret-position="176">
|
||||
<caret line="172" selection-start-line="172" selection-end-line="172" />
|
||||
<folding>
|
||||
<element signature="e#277#310#0" expanded="true" />
|
||||
</folding>
|
||||
</state>
|
||||
</provider>
|
||||
</entry>
|
||||
</file>
|
||||
<file pinned="false" current-in-tab="false">
|
||||
<entry file="file://$PROJECT_DIR$/get_features_into_CSV.py">
|
||||
<provider selected="true" editor-type-id="text-editor">
|
||||
<state relative-caret-position="270">
|
||||
<caret line="56" column="24" selection-start-line="56" selection-start-column="24" selection-end-line="56" selection-end-column="24" />
|
||||
</state>
|
||||
</provider>
|
||||
</entry>
|
||||
</file>
|
||||
<file pinned="false" current-in-tab="false">
|
||||
<entry file="file://$PROJECT_DIR$/data/features_all.csv">
|
||||
<provider selected="true" editor-type-id="csv-text-editor" />
|
||||
</entry>
|
||||
</file>
|
||||
<file pinned="false" current-in-tab="true">
|
||||
<entry file="file://$PROJECT_DIR$/face_reco_from_camera.py">
|
||||
<provider selected="true" editor-type-id="text-editor">
|
||||
<state relative-caret-position="195">
|
||||
<caret line="96" selection-start-line="96" selection-end-line="96" />
|
||||
<folding>
|
||||
<element signature="e#201#234#0" expanded="true" />
|
||||
</folding>
|
||||
</state>
|
||||
</provider>
|
||||
</entry>
|
||||
</file>
|
||||
<file pinned="false" current-in-tab="false">
|
||||
<entry file="file://$PROJECT_DIR$/README.rst">
|
||||
<provider selected="true" editor-type-id="restructured-text-editor" />
|
||||
</entry>
|
||||
</file>
|
||||
<file pinned="false" current-in-tab="false">
|
||||
<entry file="file://$PROJECT_DIR$/how_to_use_camera.py">
|
||||
<provider selected="true" editor-type-id="text-editor">
|
||||
<state relative-caret-position="15">
|
||||
<caret line="27" column="13" selection-start-line="27" selection-start-column="13" selection-end-line="27" selection-end-column="13" />
|
||||
</state>
|
||||
</provider>
|
||||
</entry>
|
||||
</file>
|
||||
</leaf>
|
||||
</component>
|
||||
<component name="FileTemplateManagerImpl">
|
||||
<option name="RECENT_TEMPLATES">
|
||||
<list>
|
||||
@ -75,102 +21,21 @@
|
||||
</list>
|
||||
</option>
|
||||
</component>
|
||||
<component name="FindInProjectRecents">
|
||||
<findStrings>
|
||||
<find>rects</find>
|
||||
<find>i</find>
|
||||
<find>dets</find>
|
||||
<find>cnt_p</find>
|
||||
<find>im_rd</find>
|
||||
<find>predictor</find>
|
||||
<find>:</find>
|
||||
<find>,</find>
|
||||
<find>pre_clear</find>
|
||||
<find>np</find>
|
||||
<find>path_make_dir</find>
|
||||
<find>path_csvs_from_photos</find>
|
||||
<find>path_faces_rd</find>
|
||||
<find>path_csv</find>
|
||||
<find>path_csv_from_photos_rd</find>
|
||||
<find>feature_mean</find>
|
||||
<find>dir_pics</find>
|
||||
<find>current_face_dir</find>
|
||||
<find>person_cnt</find>
|
||||
<find>cnt_ss</find>
|
||||
</findStrings>
|
||||
<replaceStrings>
|
||||
<replace>feature_num</replace>
|
||||
<replace>faces</replace>
|
||||
<replace>cnt_ss</replace>
|
||||
<replace>,</replace>
|
||||
<replace>img_rd</replace>
|
||||
<replace>:</replace>
|
||||
<replace>pre_work</replace>
|
||||
<replace>path_csvs_from_photos</replace>
|
||||
<replace>path_photos_from_camera</replace>
|
||||
<replace>path_csv_from_photos</replace>
|
||||
<replace>feature_mean_list</replace>
|
||||
<replace>photos_list</replace>
|
||||
</replaceStrings>
|
||||
</component>
|
||||
<component name="Git.Settings">
|
||||
<option name="RECENT_GIT_ROOT_PATH" value="$PROJECT_DIR$" />
|
||||
</component>
|
||||
<component name="IdeDocumentHistory">
|
||||
<option name="CHANGED_PATHS">
|
||||
<list>
|
||||
<option value="$PROJECT_DIR$/use_camera.py" />
|
||||
<option value="$PROJECT_DIR$/how_to_use_camera.py" />
|
||||
<option value="$PROJECT_DIR$/get_features_into_CSV.py" />
|
||||
<option value="$PROJECT_DIR$/test.py" />
|
||||
<option value="$PROJECT_DIR$/get_faces_from_camera.py" />
|
||||
<option value="$PROJECT_DIR$/README.rst" />
|
||||
<option value="$PROJECT_DIR$/face_reco_from_camera.py" />
|
||||
</list>
|
||||
</option>
|
||||
</component>
|
||||
<component name="ProjectFrameBounds">
|
||||
<option name="x" value="438" />
|
||||
<option name="y" value="28" />
|
||||
<option name="width" value="1717" />
|
||||
<option name="height" value="987" />
|
||||
</component>
|
||||
<component name="ProjectId" id="1Tq7xXTTl7R3HeMqxP7UMMKZMeC" />
|
||||
<component name="ProjectLevelVcsManager" settingsEditedManually="true" />
|
||||
<component name="ProjectView">
|
||||
<navigator proportions="" version="1">
|
||||
<foldersAlwaysOnTop value="true" />
|
||||
</navigator>
|
||||
<panes>
|
||||
<pane id="ProjectPane">
|
||||
<subPane>
|
||||
<expand>
|
||||
<path>
|
||||
<item name="Dlib_face_recognition_from_camera" type="b2602c69:ProjectViewProjectNode" />
|
||||
<item name="Dlib_face_recognition_from_camera" type="462c0819:PsiDirectoryNode" />
|
||||
</path>
|
||||
<path>
|
||||
<item name="Dlib_face_recognition_from_camera" type="b2602c69:ProjectViewProjectNode" />
|
||||
<item name="Dlib_face_recognition_from_camera" type="462c0819:PsiDirectoryNode" />
|
||||
<item name="data" type="462c0819:PsiDirectoryNode" />
|
||||
</path>
|
||||
</expand>
|
||||
<select />
|
||||
</subPane>
|
||||
</pane>
|
||||
<pane id="Scope" />
|
||||
</panes>
|
||||
<component name="ProjectViewState">
|
||||
<option name="hideEmptyMiddlePackages" value="true" />
|
||||
<option name="showExcludedFiles" value="true" />
|
||||
<option name="showLibraryContents" value="true" />
|
||||
</component>
|
||||
<component name="PropertiesComponent">
|
||||
<property name="SHARE_PROJECT_CONFIGURATION_FILES" value="true" />
|
||||
<property name="last_opened_file_path" value="$PROJECT_DIR$" />
|
||||
<property name="settings.editor.selected.configurable" value="com.jetbrains.python.configuration.PyActiveSdkModuleConfigurable" />
|
||||
</component>
|
||||
<component name="PyConsoleOptionsProvider">
|
||||
<option name="myPythonConsoleState">
|
||||
<console-settings is-module-sdk="true">
|
||||
<option name="myUseModuleSdk" value="true" />
|
||||
</console-settings>
|
||||
</option>
|
||||
</component>
|
||||
<component name="RunDashboard">
|
||||
<option name="ruleStates">
|
||||
<list>
|
||||
@ -183,8 +48,50 @@
|
||||
</list>
|
||||
</option>
|
||||
</component>
|
||||
<component name="RunManager" selected="Python.face_reco_from_camera">
|
||||
<configuration name="face_reco_from_camera" type="PythonConfigurationType" factoryName="Python" temporary="true">
|
||||
<component name="RunManager" selected="Python.face_descriptor_from_camera">
|
||||
<configuration name="face_descriptor_compute" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
|
||||
<module name="Dlib_face_recognition_from_camera" />
|
||||
<option name="INTERPRETER_OPTIONS" value="" />
|
||||
<option name="PARENT_ENVS" value="true" />
|
||||
<envs>
|
||||
<env name="PYTHONUNBUFFERED" value="1" />
|
||||
</envs>
|
||||
<option name="SDK_HOME" value="" />
|
||||
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
|
||||
<option name="IS_MODULE_SDK" value="true" />
|
||||
<option name="ADD_CONTENT_ROOTS" value="true" />
|
||||
<option name="ADD_SOURCE_ROOTS" value="true" />
|
||||
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/face_descriptor_compute.py" />
|
||||
<option name="PARAMETERS" value="" />
|
||||
<option name="SHOW_COMMAND_LINE" value="false" />
|
||||
<option name="EMULATE_TERMINAL" value="false" />
|
||||
<option name="MODULE_MODE" value="false" />
|
||||
<option name="REDIRECT_INPUT" value="false" />
|
||||
<option name="INPUT_FILE" value="" />
|
||||
<method v="2" />
|
||||
</configuration>
|
||||
<configuration name="face_descriptor_from_camera" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
|
||||
<module name="Dlib_face_recognition_from_camera" />
|
||||
<option name="INTERPRETER_OPTIONS" value="" />
|
||||
<option name="PARENT_ENVS" value="true" />
|
||||
<envs>
|
||||
<env name="PYTHONUNBUFFERED" value="1" />
|
||||
</envs>
|
||||
<option name="SDK_HOME" value="" />
|
||||
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
|
||||
<option name="IS_MODULE_SDK" value="true" />
|
||||
<option name="ADD_CONTENT_ROOTS" value="true" />
|
||||
<option name="ADD_SOURCE_ROOTS" value="true" />
|
||||
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/face_descriptor_from_camera.py" />
|
||||
<option name="PARAMETERS" value="" />
|
||||
<option name="SHOW_COMMAND_LINE" value="false" />
|
||||
<option name="EMULATE_TERMINAL" value="false" />
|
||||
<option name="MODULE_MODE" value="false" />
|
||||
<option name="REDIRECT_INPUT" value="false" />
|
||||
<option name="INPUT_FILE" value="" />
|
||||
<method v="2" />
|
||||
</configuration>
|
||||
<configuration name="face_reco_from_camera" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
|
||||
<module name="Dlib_face_recognition_from_camera" />
|
||||
<option name="INTERPRETER_OPTIONS" value="" />
|
||||
<option name="PARENT_ENVS" value="true" />
|
||||
@ -205,6 +112,27 @@
|
||||
<option name="INPUT_FILE" value="" />
|
||||
<method v="2" />
|
||||
</configuration>
|
||||
<configuration name="features_extraction_to_csv" type="PythonConfigurationType" factoryName="Python" temporary="true">
|
||||
<module name="Dlib_face_recognition_from_camera" />
|
||||
<option name="INTERPRETER_OPTIONS" value="" />
|
||||
<option name="PARENT_ENVS" value="true" />
|
||||
<envs>
|
||||
<env name="PYTHONUNBUFFERED" value="1" />
|
||||
</envs>
|
||||
<option name="SDK_HOME" value="" />
|
||||
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
|
||||
<option name="IS_MODULE_SDK" value="true" />
|
||||
<option name="ADD_CONTENT_ROOTS" value="true" />
|
||||
<option name="ADD_SOURCE_ROOTS" value="true" />
|
||||
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/features_extraction_to_csv.py" />
|
||||
<option name="PARAMETERS" value="" />
|
||||
<option name="SHOW_COMMAND_LINE" value="false" />
|
||||
<option name="EMULATE_TERMINAL" value="false" />
|
||||
<option name="MODULE_MODE" value="false" />
|
||||
<option name="REDIRECT_INPUT" value="false" />
|
||||
<option name="INPUT_FILE" value="" />
|
||||
<method v="2" />
|
||||
</configuration>
|
||||
<configuration name="get_faces_from_camera" type="PythonConfigurationType" factoryName="Python" temporary="true">
|
||||
<module name="Dlib_face_recognition_from_camera" />
|
||||
<option name="INTERPRETER_OPTIONS" value="" />
|
||||
@ -226,83 +154,20 @@
|
||||
<option name="INPUT_FILE" value="" />
|
||||
<method v="2" />
|
||||
</configuration>
|
||||
<configuration name="get_features_into_CSV" type="PythonConfigurationType" factoryName="Python" temporary="true">
|
||||
<module name="Dlib_face_recognition_from_camera" />
|
||||
<option name="INTERPRETER_OPTIONS" value="" />
|
||||
<option name="PARENT_ENVS" value="true" />
|
||||
<envs>
|
||||
<env name="PYTHONUNBUFFERED" value="1" />
|
||||
</envs>
|
||||
<option name="SDK_HOME" value="" />
|
||||
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
|
||||
<option name="IS_MODULE_SDK" value="true" />
|
||||
<option name="ADD_CONTENT_ROOTS" value="true" />
|
||||
<option name="ADD_SOURCE_ROOTS" value="true" />
|
||||
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/get_features_into_CSV.py" />
|
||||
<option name="PARAMETERS" value="" />
|
||||
<option name="SHOW_COMMAND_LINE" value="false" />
|
||||
<option name="EMULATE_TERMINAL" value="false" />
|
||||
<option name="MODULE_MODE" value="false" />
|
||||
<option name="REDIRECT_INPUT" value="false" />
|
||||
<option name="INPUT_FILE" value="" />
|
||||
<method v="2" />
|
||||
</configuration>
|
||||
<configuration name="how_to_use_camera" type="PythonConfigurationType" factoryName="Python" temporary="true">
|
||||
<module name="Dlib_face_recognition_from_camera" />
|
||||
<option name="INTERPRETER_OPTIONS" value="" />
|
||||
<option name="PARENT_ENVS" value="true" />
|
||||
<envs>
|
||||
<env name="PYTHONUNBUFFERED" value="1" />
|
||||
</envs>
|
||||
<option name="SDK_HOME" value="" />
|
||||
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
|
||||
<option name="IS_MODULE_SDK" value="true" />
|
||||
<option name="ADD_CONTENT_ROOTS" value="true" />
|
||||
<option name="ADD_SOURCE_ROOTS" value="true" />
|
||||
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/how_to_use_camera.py" />
|
||||
<option name="PARAMETERS" value="" />
|
||||
<option name="SHOW_COMMAND_LINE" value="false" />
|
||||
<option name="EMULATE_TERMINAL" value="false" />
|
||||
<option name="MODULE_MODE" value="false" />
|
||||
<option name="REDIRECT_INPUT" value="false" />
|
||||
<option name="INPUT_FILE" value="" />
|
||||
<method v="2" />
|
||||
</configuration>
|
||||
<configuration name="test" type="PythonConfigurationType" factoryName="Python" temporary="true">
|
||||
<module name="Dlib_face_recognition_from_camera" />
|
||||
<option name="INTERPRETER_OPTIONS" value="" />
|
||||
<option name="PARENT_ENVS" value="true" />
|
||||
<envs>
|
||||
<env name="PYTHONUNBUFFERED" value="1" />
|
||||
</envs>
|
||||
<option name="SDK_HOME" value="" />
|
||||
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
|
||||
<option name="IS_MODULE_SDK" value="true" />
|
||||
<option name="ADD_CONTENT_ROOTS" value="true" />
|
||||
<option name="ADD_SOURCE_ROOTS" value="true" />
|
||||
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/test.py" />
|
||||
<option name="PARAMETERS" value="" />
|
||||
<option name="SHOW_COMMAND_LINE" value="false" />
|
||||
<option name="EMULATE_TERMINAL" value="false" />
|
||||
<option name="MODULE_MODE" value="false" />
|
||||
<option name="REDIRECT_INPUT" value="false" />
|
||||
<option name="INPUT_FILE" value="" />
|
||||
<method v="2" />
|
||||
</configuration>
|
||||
<list>
|
||||
<item itemvalue="Python.face_descriptor_compute" />
|
||||
<item itemvalue="Python.face_descriptor_from_camera" />
|
||||
<item itemvalue="Python.face_reco_from_camera" />
|
||||
<item itemvalue="Python.features_extraction_to_csv" />
|
||||
<item itemvalue="Python.get_faces_from_camera" />
|
||||
<item itemvalue="Python.get_features_into_CSV" />
|
||||
<item itemvalue="Python.how_to_use_camera" />
|
||||
<item itemvalue="Python.test" />
|
||||
</list>
|
||||
<recent_temporary>
|
||||
<list>
|
||||
<item itemvalue="Python.face_descriptor_from_camera" />
|
||||
<item itemvalue="Python.face_reco_from_camera" />
|
||||
<item itemvalue="Python.get_features_into_CSV" />
|
||||
<item itemvalue="Python.features_extraction_to_csv" />
|
||||
<item itemvalue="Python.get_faces_from_camera" />
|
||||
<item itemvalue="Python.test" />
|
||||
<item itemvalue="Python.how_to_use_camera" />
|
||||
<item itemvalue="Python.face_descriptor_compute" />
|
||||
</list>
|
||||
</recent_temporary>
|
||||
</component>
|
||||
@ -311,7 +176,7 @@
|
||||
</component>
|
||||
<component name="TaskManager">
|
||||
<task active="true" id="Default" summary="Default task">
|
||||
<changelist id="39c25e36-24e3-48b8-a41f-0d53e408e855" name="Default" comment="" />
|
||||
<changelist id="e58b655a-3a9b-4001-b4da-39e07ab46629" name="Default Changelist" comment="" />
|
||||
<created>1538622047029</created>
|
||||
<option name="number" value="Default" />
|
||||
<option name="presentableId" value="Default" />
|
||||
@ -319,28 +184,56 @@
|
||||
</task>
|
||||
<servers />
|
||||
</component>
|
||||
<component name="ToolWindowManager">
|
||||
<frame x="0" y="27" width="1920" height="988" extended-state="6" />
|
||||
<editor active="true" />
|
||||
<layout>
|
||||
<window_info content_ui="combo" id="Project" order="0" visible="true" weight="0.13502109" />
|
||||
<window_info id="Structure" order="1" weight="0.25" />
|
||||
<window_info id="Favorites" order="2" side_tool="true" />
|
||||
<window_info anchor="bottom" id="Message" order="0" />
|
||||
<window_info anchor="bottom" id="Find" order="1" />
|
||||
<window_info active="true" anchor="bottom" id="Run" order="2" visible="true" weight="0.035252646" />
|
||||
<window_info anchor="bottom" id="Debug" order="3" weight="0.39952996" />
|
||||
<window_info anchor="bottom" id="Cvs" order="4" weight="0.25" />
|
||||
<window_info anchor="bottom" id="Inspection" order="5" weight="0.4" />
|
||||
<window_info anchor="bottom" id="TODO" order="6" />
|
||||
<window_info anchor="bottom" id="Version Control" order="7" />
|
||||
<window_info anchor="bottom" id="Terminal" order="8" weight="0.4620462" />
|
||||
<window_info anchor="bottom" id="Event Log" order="9" side_tool="true" />
|
||||
<window_info anchor="bottom" id="Python Console" order="10" />
|
||||
<window_info anchor="right" id="Commander" order="0" weight="0.4" />
|
||||
<window_info anchor="right" id="Ant Build" order="1" weight="0.25" />
|
||||
<window_info anchor="right" content_ui="combo" id="Hierarchy" order="2" weight="0.25" />
|
||||
</layout>
|
||||
<component name="Vcs.Log.Tabs.Properties">
|
||||
<option name="TAB_STATES">
|
||||
<map>
|
||||
<entry key="MAIN">
|
||||
<value>
|
||||
<State>
|
||||
<option name="COLUMN_ORDER" />
|
||||
</State>
|
||||
</value>
|
||||
</entry>
|
||||
</map>
|
||||
</option>
|
||||
</component>
|
||||
<component name="WindowStateProjectService">
|
||||
<state width="1897" height="194" key="GridCell.Tab.0.bottom" timestamp="1587297625581">
|
||||
<screen x="0" y="27" width="1920" height="993" />
|
||||
</state>
|
||||
<state width="1897" height="194" key="GridCell.Tab.0.bottom/0.27.1920.993@0.27.1920.993" timestamp="1587297625581" />
|
||||
<state width="1897" height="194" key="GridCell.Tab.0.center" timestamp="1587297625579">
|
||||
<screen x="0" y="27" width="1920" height="993" />
|
||||
</state>
|
||||
<state width="1897" height="194" key="GridCell.Tab.0.center/0.27.1920.993@0.27.1920.993" timestamp="1587297625579" />
|
||||
<state width="1897" height="194" key="GridCell.Tab.0.left" timestamp="1587297625578">
|
||||
<screen x="0" y="27" width="1920" height="993" />
|
||||
</state>
|
||||
<state width="1897" height="194" key="GridCell.Tab.0.left/0.27.1920.993@0.27.1920.993" timestamp="1587297625578" />
|
||||
<state width="1897" height="194" key="GridCell.Tab.0.right" timestamp="1587297625580">
|
||||
<screen x="0" y="27" width="1920" height="993" />
|
||||
</state>
|
||||
<state width="1897" height="194" key="GridCell.Tab.0.right/0.27.1920.993@0.27.1920.993" timestamp="1587297625580" />
|
||||
<state width="1485" height="299" key="GridCell.Tab.1.bottom" timestamp="1587263908422">
|
||||
<screen x="0" y="27" width="1920" height="993" />
|
||||
</state>
|
||||
<state width="1485" height="299" key="GridCell.Tab.1.bottom/0.27.1920.993@0.27.1920.993" timestamp="1587263908422" />
|
||||
<state width="1485" height="299" key="GridCell.Tab.1.center" timestamp="1587263908422">
|
||||
<screen x="0" y="27" width="1920" height="993" />
|
||||
</state>
|
||||
<state width="1485" height="299" key="GridCell.Tab.1.center/0.27.1920.993@0.27.1920.993" timestamp="1587263908422" />
|
||||
<state width="1485" height="299" key="GridCell.Tab.1.left" timestamp="1587263908422">
|
||||
<screen x="0" y="27" width="1920" height="993" />
|
||||
</state>
|
||||
<state width="1485" height="299" key="GridCell.Tab.1.left/0.27.1920.993@0.27.1920.993" timestamp="1587263908422" />
|
||||
<state width="1485" height="299" key="GridCell.Tab.1.right" timestamp="1587263908422">
|
||||
<screen x="0" y="27" width="1920" height="993" />
|
||||
</state>
|
||||
<state width="1485" height="299" key="GridCell.Tab.1.right/0.27.1920.993@0.27.1920.993" timestamp="1587263908422" />
|
||||
<state x="759" y="251" width="672" height="678" key="search.everywhere.popup" timestamp="1587264669499">
|
||||
<screen x="0" y="27" width="1920" height="993" />
|
||||
</state>
|
||||
<state x="759" y="251" width="672" height="678" key="search.everywhere.popup/0.27.1920.993@0.27.1920.993" timestamp="1587264669499" />
|
||||
</component>
|
||||
<component name="XDebuggerManager">
|
||||
<breakpoint-manager>
|
||||
@ -353,59 +246,4 @@
|
||||
</default-breakpoints>
|
||||
</breakpoint-manager>
|
||||
</component>
|
||||
<component name="editorHistoryManager">
|
||||
<entry file="file://$PROJECT_DIR$/use_camera.py" />
|
||||
<entry file="file://$PROJECT_DIR$/patch" />
|
||||
<entry file="file://$PROJECT_DIR$/README.md" />
|
||||
<entry file="file://$PROJECT_DIR$/data/data_csvs_from_camera/person_1.csv" />
|
||||
<entry file="file://$PROJECT_DIR$/data/data_csvs_from_camera/person_2.csv" />
|
||||
<entry file="file://$PROJECT_DIR$/data/data_faces_from_camera/person_6/img_face_1.jpg" />
|
||||
<entry file="file://$PROJECT_DIR$/test.py">
|
||||
<provider selected="true" editor-type-id="text-editor">
|
||||
<state relative-caret-position="30">
|
||||
<caret line="2" column="28" selection-start-line="2" selection-start-column="6" selection-end-line="2" selection-end-column="28" />
|
||||
</state>
|
||||
</provider>
|
||||
</entry>
|
||||
<entry file="file://$PROJECT_DIR$/README.rst">
|
||||
<provider selected="true" editor-type-id="restructured-text-editor" />
|
||||
</entry>
|
||||
<entry file="file://$PROJECT_DIR$/how_to_use_camera.py">
|
||||
<provider selected="true" editor-type-id="text-editor">
|
||||
<state relative-caret-position="15">
|
||||
<caret line="27" column="13" selection-start-line="27" selection-start-column="13" selection-end-line="27" selection-end-column="13" />
|
||||
</state>
|
||||
</provider>
|
||||
</entry>
|
||||
<entry file="file://$PROJECT_DIR$/data/features_all.csv">
|
||||
<provider selected="true" editor-type-id="csv-text-editor" />
|
||||
</entry>
|
||||
<entry file="file://$PROJECT_DIR$/get_features_into_CSV.py">
|
||||
<provider selected="true" editor-type-id="text-editor">
|
||||
<state relative-caret-position="270">
|
||||
<caret line="56" column="24" selection-start-line="56" selection-start-column="24" selection-end-line="56" selection-end-column="24" />
|
||||
</state>
|
||||
</provider>
|
||||
</entry>
|
||||
<entry file="file://$PROJECT_DIR$/get_faces_from_camera.py">
|
||||
<provider selected="true" editor-type-id="text-editor">
|
||||
<state relative-caret-position="176">
|
||||
<caret line="172" selection-start-line="172" selection-end-line="172" />
|
||||
<folding>
|
||||
<element signature="e#277#310#0" expanded="true" />
|
||||
</folding>
|
||||
</state>
|
||||
</provider>
|
||||
</entry>
|
||||
<entry file="file://$PROJECT_DIR$/face_reco_from_camera.py">
|
||||
<provider selected="true" editor-type-id="text-editor">
|
||||
<state relative-caret-position="195">
|
||||
<caret line="96" selection-start-line="96" selection-end-line="96" />
|
||||
<folding>
|
||||
<element signature="e#201#234#0" expanded="true" />
|
||||
</folding>
|
||||
</state>
|
||||
</provider>
|
||||
</entry>
|
||||
</component>
|
||||
</project>
|
||||
21
LICENSE
Normal file
@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2020 coneypo
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
179
README.rst
Normal file → Executable file
@ -1,5 +1,5 @@
|
||||
Face recognition from camera
|
||||
############################
|
||||
Face recognition from camera with Dlib
|
||||
######################################
|
||||
|
||||
Introduction
|
||||
************
|
||||
@ -11,7 +11,13 @@ Detect and recognize single/multi-faces from camera;
|
||||
|
||||
#. 摄像头人脸录入 / Face register
|
||||
|
||||
.. image:: introduction/get_face_from_camera.png
|
||||
.. image:: introduction/face_register.png
|
||||
:align: center
|
||||
|
||||
请不要离摄像头过近,人脸超出摄像头范围时会有 "OUT OF RANGE" 提醒 /
|
||||
Please do not be too close to the camera, or you can't save faces with "OUT OF RANGE" warning;
|
||||
|
||||
.. image:: introduction/face_register_warning.png
|
||||
:align: center
|
||||
|
||||
#. 提取特征建立人脸数据库 / Generate database from images captured
|
||||
@ -19,44 +25,161 @@ Detect and recognize single/multi-faces from camera;
|
||||
|
||||
当单张人脸 / When single-face:
|
||||
|
||||
.. image:: introduction/face_reco_single_person.png
|
||||
.. image:: introduction/face_reco_single.png
|
||||
:align: center
|
||||
|
||||
利用 OT 对于单张人脸追踪/ Use OT to track, which can improve FPS from 1.x to 20.x:
|
||||
|
||||
.. image:: introduction/face_reco_single_ot.png
|
||||
:align: center
|
||||
|
||||
当多张人脸 / When multi-faces:
|
||||
|
||||
.. image:: introduction/face_reco_two_people.png
|
||||
|
||||
.. image:: introduction/face_reco_multi.png
|
||||
:align: center
|
||||
|
||||
利用 OT 来实现 / When multi-faces with OT:
|
||||
|
||||
.. image:: introduction/face_reco_multi_ot.png
|
||||
:align: center
|
||||
|
||||
定制显示名字, 可以写中文 / Customize names:
|
||||
|
||||
.. image:: introduction/face_reco_with_name.png
|
||||
:align: center
|
||||
|
||||
|
||||
** 关于精度 / About accuracy:
|
||||
|
||||
* When using a distance threshold of ``0.6``, the dlib model obtains an accuracy of ``99.38%`` on the standard LFW face recognition benchmark.
|
||||
|
||||
** 关于算法 / About algorithm
|
||||
|
||||
* 基于 Residual Neural Network / 残差网络的 CNN 模型;
|
||||
|
||||
* This model is a ResNet network with 29 conv layers. It's essentially a version of the ResNet-34 network from the paper Deep Residual Learning for Image Recognition by He, Zhang, Ren, and Sun with a few layers removed and the number of filters per layer reduced by half.
|
||||
|
||||
Overview
|
||||
********
|
||||
|
||||
此项目中人脸识别的实现流程 (no OT, 每一帧都进行检测+识别) / The design of this repo:
|
||||
|
||||
.. image:: introduction/overview.png
|
||||
:align: center
|
||||
|
||||
实现流程(with OT, 初始帧进行检测+识别,后续帧检测+质心跟踪) / The design of this repo:
|
||||
|
||||
.. image:: introduction/overview_with_ot.png
|
||||
:align: center
|
||||
|
||||
如果利用 OT 来跟踪,可以大大提高 FPS, 因为做识别时候需要提取特征描述子的耗时很多;
|
||||
|
||||
Steps
|
||||
*****
|
||||
|
||||
#. 进行 face register / 人脸信息采集录入
|
||||
#. 安装依赖库 / Install some python packages if needed
|
||||
|
||||
.. code-block:: python
|
||||
.. code-block:: bash
|
||||
|
||||
pip3 install opencv-python
|
||||
pip3 install scikit-image
|
||||
pip3 install dlib
|
||||
|
||||
#. 下载源码 / Download zip from website or via GitHub Desktop in windows, or git clone repo in Ubuntu
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
git clone https://github.com/coneypo/Dlib_face_recognition_from_camera
|
||||
|
||||
#. 进行人脸信息采集录入 / Register faces
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
python3 get_face_from_camera.py
|
||||
|
||||
#. 提取所有录入人脸数据存入 features_all.csv
|
||||
#. 提取所有录入人脸数据存入 "features_all.csv" / Features extraction and save into "features_all.csv"
|
||||
|
||||
.. code-block:: python
|
||||
.. code-block:: bash
|
||||
|
||||
python3 get_features_into_CSV.py
|
||||
python3 features_extraction_to_csv.py
|
||||
|
||||
#. 调用摄像头进行实时人脸识别
|
||||
#. 调用摄像头进行实时人脸识别 / Real-time face recognition
|
||||
|
||||
.. code-block:: python
|
||||
.. code-block:: bash
|
||||
|
||||
python3 face_reco_from_camera.py
|
||||
|
||||
#. 或者利用 OT 算法,调用摄像头进行实时人脸识别/ Real-time face recognition with OT
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
python3 face_reco_from_camera_ot_single_person.py
|
||||
python3 face_reco_from_camera_ot_multi_people.py
|
||||
|
||||
About Source Code
|
||||
*****************
|
||||
|
||||
Repo 的 tree / 树状图:
|
||||
|
||||
::
|
||||
|
||||
.
|
||||
├── get_faces_from_camera.py # Step 1. Face register
|
||||
├── features_extraction_to_csv.py # Step 2. Feature extraction
|
||||
├── face_reco_from_camera.py # Step 3. Face recognizer
|
||||
├── face_reco_from_camera_ot_single_person.py # Step 3. Face recognizer with OT for single person
|
||||
├── face_reco_from_camera_ot_multi_people.py # Step 3. Face recognizer with OT for multi people
|
||||
├── face_descriptor_from_camera.py # Face descriptor computation
|
||||
├── how_to_use_camera.py # Use the default camera by opencv
|
||||
├── data
|
||||
│ ├── data_dlib # Dlib's model
|
||||
│ │ ├── dlib_face_recognition_resnet_model_v1.dat
|
||||
│ │ └── shape_predictor_68_face_landmarks.dat
|
||||
│ ├── data_faces_from_camera # Face images captured from camera (will generate after step 1)
|
||||
│ │ ├── person_1
|
||||
│ │ │ ├── img_face_1.jpg
|
||||
│ │ │ └── img_face_2.jpg
|
||||
│ │ └── person_2
|
||||
│ │ └── img_face_1.jpg
|
||||
│ │ └── img_face_2.jpg
|
||||
│ └── features_all.csv # CSV to save all the features of known faces (will generate after step 2)
|
||||
├── README.rst
|
||||
└── requirements.txt # Some python packages needed
|
||||
|
||||
用到的 Dlib 相关模型函数:
|
||||
|
||||
#. Dlib 正向人脸检测器 (based on HOG), output: <class 'dlib.dlib.rectangles'>
|
||||
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
detector = dlib.get_frontal_face_detector()
|
||||
faces = detector(img_gray, 0)
|
||||
|
||||
|
||||
#. Dlib 人脸 landmark 特征点检测器, output: <class 'dlib.dlib.full_object_detection'>,
|
||||
will use shape_predictor_68_face_landmarks.dat
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# This is trained on the ibug 300-W dataset (https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/)
|
||||
# Also note that this model file is designed for use with dlib's HOG face detector.
|
||||
# That is, it expects the bounding boxes from the face detector to be aligned a certain way, the way dlib's HOG face detector does it.
|
||||
# It won't work as well when used with a face detector that produces differently aligned boxes,
|
||||
# such as the CNN based mmod_human_face_detector.dat face detector.
|
||||
|
||||
predictor = dlib.shape_predictor("data/data_dlib/shape_predictor_68_face_landmarks.dat")
|
||||
shape = predictor(img_rd, faces[i])
|
||||
|
||||
|
||||
#. Dlib 特征描述子 Face recognition model, the object maps human faces into 128D vectors
|
||||
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
face_rec = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
|
||||
|
||||
|
||||
Python 源码介绍如下:
|
||||
|
||||
#. get_face_from_camera.py:
|
||||
@ -67,7 +190,7 @@ Python 源码介绍如下:
|
||||
* 超出会有 "out of range" 的提醒;
|
||||
|
||||
|
||||
#. get_features_into_CSV.py:
|
||||
#. features_extraction_to_csv.py:
|
||||
|
||||
从上一步存下来的图像文件中,提取人脸数据存入CSV;
|
||||
|
||||
@ -83,27 +206,37 @@ Python 源码介绍如下:
|
||||
|
||||
* 将捕获到的人脸数据和之前存的人脸数据进行对比计算欧式距离, 由此判断是否是同一个人;
|
||||
|
||||
#. face_reco_from_camera_ot_single_person/multi_people.py:
|
||||
|
||||
区别于 face_reco_from_camera.py (对每一帧都进行检测+识别),只会对初始帧做检测+识别,对后续帧做检测+质心跟踪;
|
||||
|
||||
|
||||
#. (optional) face_descriptor_from_camera.py
|
||||
|
||||
调用摄像头进行实时特征描述子计算; / Real-time face descriptor computation;
|
||||
|
||||
More
|
||||
****
|
||||
|
||||
Tips:
|
||||
|
||||
1. Windows下建议不要把代码放到 ``C:\``, 可能会出现权限读取问题
|
||||
#. 如果希望详细了解 dlib 的用法,请参考 Dlib 官方 Python api 的网站 / You can refer to this link for more information of how to use dlib: http://dlib.net/python/index.html
|
||||
|
||||
2. 代码最好不要有中文路径
|
||||
#. Windows下建议不要把代码放到 ``C:\``, 可能会出现权限读取问题 / In windows, we will not recommend that running this repo in dir ``C:\``
|
||||
|
||||
3. 人脸录入的时候先建文件夹再保存图片, 先 ``N`` 再 ``S``
|
||||
#. 代码最好不要有中文路径 / No chinese characters in your code directory
|
||||
|
||||
For more details, please refer to my blog (in chinese) or mail to me /
|
||||
#. 人脸录入的时候先建文件夹再保存图片, 先 ``N`` 再 ``S`` / Press ``N`` before ``S``
|
||||
|
||||
可以访问我的博客获取本项目的更详细介绍,如有问题可以邮件联系我:
|
||||
#. 关于人脸识别卡顿 FPS 低问题, 原因是特征描述子提取很费时间, 光跑 face_descriptor_from_camera.py 中 face_reco_model.compute_face_descriptor 在 CPU: i7-8700K 得到的最终 FPS: 5~6 (检测在 0.03s, 特征描述子提取在 0.158s, 和已知人脸进行遍历对比在 0.003s 左右), 所以主要提取特征时候耗资源, 可以用 OT 去做追踪,而不是对每一帧都做检测+识别
|
||||
|
||||
可以访问我的博客获取本项目的更详细介绍,如有问题可以邮件联系我 /
|
||||
For more details, please refer to my blog (in chinese) or mail to me :
|
||||
|
||||
* Blog: https://www.cnblogs.com/AdaminXie/p/9010298.html
|
||||
|
||||
* 关于 OT 部分的更新在 Blog: https://www.cnblogs.com/AdaminXie/p/13566269.html
|
||||
|
||||
* Mail: coneypo@foxmail.com
|
||||
|
||||
|
||||
仅限于交流学习, 商业合作勿扰;
|
||||
* Mail: coneypo@foxmail.com ( Dlib 相关 repo 问题请联系 @foxmail 而不是 @intel )
|
||||
|
||||
Thanks for your support.
|
||||
|
||||
0
data/data_dlib/dlib_face_recognition_resnet_model_v1.dat
Normal file → Executable file
0
data/data_dlib/shape_predictor_68_face_landmarks.dat
Normal file → Executable file
|
Before Width: | Height: | Size: 9.0 KiB |
|
Before Width: | Height: | Size: 9.6 KiB |
|
Before Width: | Height: | Size: 8.0 KiB |
|
Before Width: | Height: | Size: 8.8 KiB |
|
Before Width: | Height: | Size: 7.9 KiB |
|
Before Width: | Height: | Size: 9.2 KiB |
|
Before Width: | Height: | Size: 7.3 KiB |
|
Before Width: | Height: | Size: 9.0 KiB |
|
Before Width: | Height: | Size: 7.7 KiB |
|
Before Width: | Height: | Size: 10 KiB |
|
Before Width: | Height: | Size: 8.3 KiB |
|
Before Width: | Height: | Size: 6.3 KiB |
|
Before Width: | Height: | Size: 5.9 KiB |
|
Before Width: | Height: | Size: 6.5 KiB |
|
Before Width: | Height: | Size: 5.6 KiB |
|
Before Width: | Height: | Size: 6.7 KiB |
|
Before Width: | Height: | Size: 5.8 KiB |
|
Before Width: | Height: | Size: 6.2 KiB |
|
Before Width: | Height: | Size: 5.5 KiB |
|
Before Width: | Height: | Size: 6.7 KiB |
|
Before Width: | Height: | Size: 6.4 KiB |
|
Before Width: | Height: | Size: 5.8 KiB |
|
Before Width: | Height: | Size: 7.4 KiB |
|
Before Width: | Height: | Size: 6.6 KiB |
|
Before Width: | Height: | Size: 6.8 KiB |
|
Before Width: | Height: | Size: 7.4 KiB |
|
Before Width: | Height: | Size: 7.2 KiB |
|
Before Width: | Height: | Size: 7.0 KiB |
|
Before Width: | Height: | Size: 5.9 KiB |
|
Before Width: | Height: | Size: 6.1 KiB |
|
Before Width: | Height: | Size: 6.7 KiB |
|
Before Width: | Height: | Size: 7.2 KiB |
|
Before Width: | Height: | Size: 6.7 KiB |
|
Before Width: | Height: | Size: 6.7 KiB |
|
Before Width: | Height: | Size: 6.8 KiB |
|
Before Width: | Height: | Size: 6.7 KiB |
|
Before Width: | Height: | Size: 7.0 KiB |
|
Before Width: | Height: | Size: 7.0 KiB |
|
Before Width: | Height: | Size: 5.7 KiB |
|
Before Width: | Height: | Size: 5.9 KiB |
|
Before Width: | Height: | Size: 6.4 KiB |
|
Before Width: | Height: | Size: 7.7 KiB |
|
Before Width: | Height: | Size: 9.9 KiB |
|
Before Width: | Height: | Size: 5.7 KiB |
|
Before Width: | Height: | Size: 6.4 KiB |
|
Before Width: | Height: | Size: 7.0 KiB |
|
Before Width: | Height: | Size: 7.1 KiB |
|
Before Width: | Height: | Size: 6.4 KiB |
|
Before Width: | Height: | Size: 7.8 KiB |
|
Before Width: | Height: | Size: 8.5 KiB |
|
Before Width: | Height: | Size: 6.2 KiB |
|
Before Width: | Height: | Size: 6.1 KiB |
|
Before Width: | Height: | Size: 6.0 KiB |
|
Before Width: | Height: | Size: 5.4 KiB |
|
Before Width: | Height: | Size: 7.4 KiB |
|
Before Width: | Height: | Size: 9.6 KiB |
|
Before Width: | Height: | Size: 7.0 KiB |
|
Before Width: | Height: | Size: 6.7 KiB |
BIN
data/data_faces_for_test/test_faces_1.jpg
Normal file
|
After Width: | Height: | Size: 88 KiB |
75
face_descriptor_from_camera.py
Normal file
@ -0,0 +1,75 @@
|
||||
# 摄像头实时人脸特征描述子计算 / Real-time face descriptor compute
|
||||
|
||||
import dlib # 人脸识别的库 Dlib
|
||||
import cv2 # 图像处理的库 OpenCV
|
||||
import time
|
||||
|
||||
|
||||
# 1. Dlib 正向人脸检测器
|
||||
detector = dlib.get_frontal_face_detector()
|
||||
|
||||
# 2. Dlib 人脸 landmark 特征点检测器
|
||||
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
|
||||
|
||||
# 3. Dlib Resnet 人脸识别模型,提取 128D 的特征矢量
|
||||
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
|
||||
|
||||
|
||||
class Face_Descriptor:
|
||||
def __init__(self):
|
||||
self.frame_time = 0
|
||||
self.frame_start_time = 0
|
||||
self.fps = 0
|
||||
|
||||
def update_fps(self):
|
||||
now = time.time()
|
||||
self.frame_time = now - self.frame_start_time
|
||||
self.fps = 1.0 / self.frame_time
|
||||
self.frame_start_time = now
|
||||
|
||||
def run(self):
|
||||
cap = cv2.VideoCapture(0)
|
||||
cap.set(3, 480)
|
||||
self.process(cap)
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
def process(self, stream):
|
||||
while stream.isOpened():
|
||||
flag, img_rd = stream.read()
|
||||
k = cv2.waitKey(1)
|
||||
|
||||
faces = detector(img_rd, 0)
|
||||
|
||||
font = cv2.FONT_HERSHEY_SIMPLEX
|
||||
|
||||
# 检测到人脸
|
||||
if len(faces) != 0:
|
||||
for face in faces:
|
||||
face_shape = predictor(img_rd, face)
|
||||
face_desc = face_reco_model.compute_face_descriptor(img_rd, face_shape)
|
||||
|
||||
# 添加说明
|
||||
cv2.putText(img_rd, "Face Descriptor", (20, 40), font, 1, (255, 255, 255), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(2)), (20, 100), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "Faces: " + str(len(faces)), (20, 140), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "S: Save current face", (20, 400), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "Q: Quit", (20, 450), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
|
||||
|
||||
# 按下 'q' 键退出
|
||||
if k == ord('q'):
|
||||
break
|
||||
|
||||
self.update_fps()
|
||||
|
||||
cv2.namedWindow("camera", 1)
|
||||
cv2.imshow("camera", img_rd)
|
||||
|
||||
|
||||
def main():
|
||||
Face_Descriptor_con = Face_Descriptor()
|
||||
Face_Descriptor_con.run()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
311
face_reco_from_camera.py
Normal file → Executable file
@ -1,157 +1,186 @@
|
||||
# 摄像头实时人脸识别
|
||||
# Copyright (C) 2020 coneypo
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
# Author: coneypo
|
||||
# Blog: http://www.cnblogs.com/AdaminXie
|
||||
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
|
||||
# Mail: coneypo@foxmail.com
|
||||
|
||||
# Created at 2018-05-11
|
||||
# Updated at 2019-02-26
|
||||
# 人脸识别 / Real-time face detection and recognition from images
|
||||
|
||||
import dlib # 人脸处理的库 Dlib
|
||||
import numpy as np # 数据处理的库 numpy
|
||||
import cv2 # 图像处理的库 OpenCv
|
||||
import pandas as pd # 数据处理的库 Pandas
|
||||
import dlib
|
||||
import numpy as np
|
||||
import cv2
|
||||
import pandas as pd
|
||||
import os
|
||||
import time
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
|
||||
# 人脸识别模型,提取128D的特征矢量
|
||||
# face recognition model, the object maps human faces into 128D vectors
|
||||
facerec = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
|
||||
|
||||
|
||||
# 计算两个128D向量间的欧式距离
|
||||
def return_euclidean_distance(feature_1, feature_2):
|
||||
feature_1 = np.array(feature_1)
|
||||
feature_2 = np.array(feature_2)
|
||||
dist = np.sqrt(np.sum(np.square(feature_1 - feature_2)))
|
||||
print("e_distance: ", dist)
|
||||
|
||||
if dist > 0.4:
|
||||
return "diff"
|
||||
else:
|
||||
return "same"
|
||||
|
||||
|
||||
# 处理存放所有人脸特征的 csv
|
||||
path_features_known_csv = "data/features_all.csv"
|
||||
csv_rd = pd.read_csv(path_features_known_csv, header=None)
|
||||
|
||||
# 存储的特征人脸个数
|
||||
# print(csv_rd.shape[0])
|
||||
|
||||
# 用来存放所有录入人脸特征的数组
|
||||
features_known_arr = []
|
||||
|
||||
# 读取已知人脸数据
|
||||
# known faces
|
||||
for i in range(csv_rd.shape[0]):
|
||||
features_someone_arr = []
|
||||
for j in range(0, len(csv_rd.ix[i, :])):
|
||||
features_someone_arr.append(csv_rd.ix[i, :][j])
|
||||
features_known_arr.append(features_someone_arr)
|
||||
print("Faces in Database:", len(features_known_arr))
|
||||
|
||||
# Dlib 检测器和预测器
|
||||
# Dlib 正向人脸检测器 / Use frontal face detector of Dlib
|
||||
detector = dlib.get_frontal_face_detector()
|
||||
|
||||
# Dlib 人脸 landmark 特征点检测器 / Get face landmarks
|
||||
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
|
||||
|
||||
# 创建 cv2 摄像头对象
|
||||
cap = cv2.VideoCapture(0)
|
||||
|
||||
# cap.set(propId, value)
|
||||
# 设置视频参数,propId 设置的视频参数,value 设置的参数值
|
||||
cap.set(3, 480)
|
||||
# Dlib Resnet 人脸识别模型,提取 128D 的特征矢量 / Use Dlib resnet50 model to get 128D face descriptor
|
||||
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
|
||||
|
||||
|
||||
# 返回一张图像多张人脸的 128D 特征
|
||||
def get_128d_features(img_gray):
|
||||
faces = detector(img_gray, 1)
|
||||
if len(faces) != 0:
|
||||
face_des = []
|
||||
for i in range(len(faces)):
|
||||
shape = predictor(img_gray, faces[i])
|
||||
face_des.append(facerec.compute_face_descriptor(img_gray, shape))
|
||||
else:
|
||||
face_des = []
|
||||
return face_des
|
||||
class Face_Recognizer:
|
||||
def __init__(self):
|
||||
self.feature_known_list = [] # 用来存放所有录入人脸特征的数组 / Save the features of faces in the database
|
||||
self.name_known_list = [] # 存储录入人脸名字 / Save the name of faces in the database
|
||||
|
||||
self.current_frame_face_cnt = 0 # 存储当前摄像头中捕获到的人脸数 / Counter for faces in current frame
|
||||
self.current_frame_feature_list = [] # 存储当前摄像头中捕获到的人脸特征 / Features of faces in current frame
|
||||
self.current_frame_name_position_list = [] # 存储当前摄像头中捕获到的所有人脸的名字坐标 / Positions of faces in current frame
|
||||
self.current_frame_name_list = [] # 存储当前摄像头中捕获到的所有人脸的名字 / Names of faces in current frame
|
||||
|
||||
# Update FPS
|
||||
self.fps = 0
|
||||
self.frame_start_time = 0
|
||||
|
||||
# 从 "features_all.csv" 读取录入人脸特征 / Get known faces from "features_all.csv"
|
||||
def get_face_database(self):
|
||||
if os.path.exists("data/features_all.csv"):
|
||||
path_features_known_csv = "data/features_all.csv"
|
||||
csv_rd = pd.read_csv(path_features_known_csv, header=None)
|
||||
for i in range(csv_rd.shape[0]):
|
||||
features_someone_arr = []
|
||||
for j in range(0, 128):
|
||||
if csv_rd.iloc[i][j] == '':
|
||||
features_someone_arr.append('0')
|
||||
else:
|
||||
features_someone_arr.append(csv_rd.iloc[i][j])
|
||||
self.feature_known_list.append(features_someone_arr)
|
||||
self.name_known_list.append("Person_"+str(i+1))
|
||||
print("Faces in Database:", len(self.feature_known_list))
|
||||
return 1
|
||||
else:
|
||||
print('##### Warning #####', '\n')
|
||||
print("'features_all.csv' not found!")
|
||||
print(
|
||||
"Please run 'get_faces_from_camera.py' and 'features_extraction_to_csv.py' before 'face_reco_from_camera.py'",
|
||||
'\n')
|
||||
print('##### End Warning #####')
|
||||
return 0
|
||||
|
||||
# 计算两个128D向量间的欧式距离 / Compute the e-distance between two 128D features
|
||||
@staticmethod
|
||||
def return_euclidean_distance(feature_1, feature_2):
|
||||
feature_1 = np.array(feature_1)
|
||||
feature_2 = np.array(feature_2)
|
||||
dist = np.sqrt(np.sum(np.square(feature_1 - feature_2)))
|
||||
return dist
|
||||
|
||||
# 更新 FPS / Update FPS of Video stream
|
||||
def update_fps(self):
|
||||
now = time.time()
|
||||
self.frame_time = now - self.frame_start_time
|
||||
self.fps = 1.0 / self.frame_time
|
||||
self.frame_start_time = now
|
||||
|
||||
def draw_note(self, img_rd):
|
||||
font = cv2.FONT_ITALIC
|
||||
|
||||
cv2.putText(img_rd, "Face Recognizer", (20, 40), font, 1, (255, 255, 255), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(2)), (20, 100), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "Faces: " + str(self.current_frame_face_cnt), (20, 140), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "Q: Quit", (20, 450), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
|
||||
|
||||
def draw_name(self, img_rd):
|
||||
# 在人脸框下面写人脸名字 / Write names under rectangle
|
||||
font = ImageFont.truetype("simsun.ttc", 30)
|
||||
img = Image.fromarray(cv2.cvtColor(img_rd, cv2.COLOR_BGR2RGB))
|
||||
draw = ImageDraw.Draw(img)
|
||||
for i in range(self.current_frame_face_cnt):
|
||||
# cv2.putText(img_rd, self.current_frame_name_list[i], self.current_frame_name_position_list[i], font, 0.8, (0, 255, 255), 1, cv2.LINE_AA)
|
||||
draw.text(xy=self.current_frame_name_position_list[i], text=self.current_frame_name_list[i], font=font)
|
||||
img_with_name = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
||||
return img_with_name
|
||||
|
||||
# 修改显示人名 / Show names in chinese
|
||||
def show_chinese_name(self):
|
||||
# Default known name: person_1, person_2, person_3
|
||||
if self.current_frame_face_cnt >= 1:
|
||||
self.name_known_list[0] ='张三'.encode('utf-8').decode()
|
||||
# self.name_known_list[1] ='李四'.encode('utf-8').decode()
|
||||
# self.name_known_list[2] ='xx'.encode('utf-8').decode()
|
||||
# self.name_known_list[3] ='xx'.encode('utf-8').decode()
|
||||
# self.name_known_list[4] ='xx'.encode('utf-8').decode()
|
||||
|
||||
# 处理获取的视频流,进行人脸识别 / Face detection and recognition from input video stream
|
||||
def process(self):
|
||||
# 1. 读取存放所有人脸特征的 csv / Get faces known from "features.all.csv"
|
||||
if self.get_face_database():
|
||||
|
||||
print(">>> Frame start")
|
||||
img_rd = cv2.imread("data/data_faces_for_test/test_faces_1.jpg")
|
||||
faces = detector(img_rd, 1)
|
||||
self.draw_note(img_rd)
|
||||
|
||||
# 2. 检测到人脸 / Face detected in current frame
|
||||
if len(faces) != 0:
|
||||
# 3. 获取当前捕获到的图像的所有人脸的特征 / Compute the face descriptors for faces in current frame
|
||||
for i in range(len(faces)):
|
||||
shape = predictor(img_rd, faces[i])
|
||||
self.current_frame_feature_list.append(face_reco_model.compute_face_descriptor(img_rd, shape))
|
||||
# 4. 遍历捕获到的图像中所有的人脸 / Traversal all the faces in the database
|
||||
for k in range(len(faces)):
|
||||
print(">>>>>> For face", k+1, " in camera")
|
||||
# 先默认所有人不认识,是 unknown / Set the default names of faces with "unknown"
|
||||
self.current_frame_name_list.append("unknown")
|
||||
|
||||
# 每个捕获人脸的名字坐标 / Positions of faces captured
|
||||
self.current_frame_name_position_list.append(tuple(
|
||||
[faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)]))
|
||||
|
||||
# 5. 对于某张人脸,遍历所有存储的人脸特征
|
||||
# For every faces detected, compare the faces in the database
|
||||
current_frame_e_distance_list = []
|
||||
for i in range(len(self.feature_known_list)):
|
||||
# 如果 person_X 数据不为空
|
||||
if str(self.feature_known_list[i][0]) != '0.0':
|
||||
print(" >>> With person", str(i + 1), ", the e distance: ", end='')
|
||||
e_distance_tmp = self.return_euclidean_distance(self.current_frame_feature_list[k],
|
||||
self.feature_known_list[i])
|
||||
print(e_distance_tmp)
|
||||
current_frame_e_distance_list.append(e_distance_tmp)
|
||||
else:
|
||||
# 空数据 person_X
|
||||
current_frame_e_distance_list.append(999999999)
|
||||
# 6. 寻找出最小的欧式距离匹配 / Find the one with minimum e distance
|
||||
similar_person_num = current_frame_e_distance_list.index(min(current_frame_e_distance_list))
|
||||
print(" >>> Minimum e distance with ", self.name_known_list[similar_person_num], ": ", min(current_frame_e_distance_list))
|
||||
|
||||
if min(current_frame_e_distance_list) < 0.4:
|
||||
self.current_frame_name_list[k] = self.name_known_list[similar_person_num]
|
||||
print(" >>> Face recognition result: " + str(self.name_known_list[similar_person_num]))
|
||||
else:
|
||||
print(" >>> Face recognition result: Unknown person")
|
||||
|
||||
# 矩形框 / Draw rectangle
|
||||
for kk, d in enumerate(faces):
|
||||
# 绘制矩形框
|
||||
cv2.rectangle(img_rd, tuple([d.left(), d.top()]), tuple([d.right(), d.bottom()]),
|
||||
(0, 255, 255), 2)
|
||||
|
||||
self.current_frame_face_cnt = len(faces)
|
||||
|
||||
img_rd = self.draw_name(img_rd)
|
||||
|
||||
print(">>>>>> Faces in camera now:", self.current_frame_name_list)
|
||||
|
||||
cv2.imshow("camera", img_rd)
|
||||
cv2.waitKey(0)
|
||||
|
||||
print(">>> Frame ends\n\n")
|
||||
|
||||
|
||||
# cap.isOpened() 返回 true/false 检查初始化是否成功
|
||||
while cap.isOpened():
|
||||
def main():
|
||||
Face_Recognizer_con = Face_Recognizer()
|
||||
Face_Recognizer_con.process()
|
||||
|
||||
flag, img_rd = cap.read()
|
||||
kk = cv2.waitKey(1)
|
||||
|
||||
# 取灰度
|
||||
img_gray = cv2.cvtColor(img_rd, cv2.COLOR_RGB2GRAY)
|
||||
|
||||
# 人脸数 faces
|
||||
faces = detector(img_gray, 0)
|
||||
|
||||
# 待会要写的字体
|
||||
font = cv2.FONT_HERSHEY_COMPLEX
|
||||
|
||||
# 存储当前摄像头中捕获到的所有人脸的坐标/名字
|
||||
pos_namelist = []
|
||||
name_namelist = []
|
||||
|
||||
# 按下 q 键退出
|
||||
if kk == ord('q'):
|
||||
break
|
||||
else:
|
||||
# 检测到人脸
|
||||
if len(faces) != 0:
|
||||
# 获取当前捕获到的图像的所有人脸的特征,存储到 features_cap_arr
|
||||
features_cap_arr = []
|
||||
for i in range(len(faces)):
|
||||
shape = predictor(img_rd, faces[i])
|
||||
features_cap_arr.append(facerec.compute_face_descriptor(img_rd, shape))
|
||||
|
||||
# 遍历捕获到的图像中所有的人脸
|
||||
for k in range(len(faces)):
|
||||
# 让人名跟随在矩形框的下方
|
||||
# 确定人名的位置坐标
|
||||
# 先默认所有人不认识,是 unknown
|
||||
name_namelist.append("unknown")
|
||||
|
||||
# 每个捕获人脸的名字坐标
|
||||
pos_namelist.append(tuple([faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top())/4)]))
|
||||
|
||||
# 对于某张人脸,遍历所有存储的人脸特征
|
||||
for i in range(len(features_known_arr)):
|
||||
print("with person_", str(i+1), "the ", end='')
|
||||
# 将某张人脸与存储的所有人脸数据进行比对
|
||||
compare = return_euclidean_distance(features_cap_arr[k], features_known_arr[i])
|
||||
if compare == "same": # 找到了相似脸
|
||||
# 在这里修改 person_1, person_2 ... 的名字
|
||||
# 这里只写了前三个
|
||||
# 可以在这里改称 Jack, Tom and others
|
||||
# Here you can modify the names shown on the camera
|
||||
if i == 0:
|
||||
name_namelist[k] = "Jack"
|
||||
elif i == 1:
|
||||
name_namelist[k] = "Tom"
|
||||
elif i == 2:
|
||||
name_namelist[k] = "Tony"
|
||||
|
||||
# 矩形框
|
||||
for kk, d in enumerate(faces):
|
||||
# 绘制矩形框
|
||||
cv2.rectangle(img_rd, tuple([d.left(), d.top()]), tuple([d.right(), d.bottom()]), (0, 255, 255), 2)
|
||||
|
||||
# 在人脸框下面写人脸名字
|
||||
for i in range(len(faces)):
|
||||
cv2.putText(img_rd, name_namelist[i], pos_namelist[i], font, 0.8, (0, 255, 255), 1, cv2.LINE_AA)
|
||||
|
||||
print("Name list now:", name_namelist, "\n")
|
||||
|
||||
cv2.putText(img_rd, "Press 'q': Quit", (20, 450), font, 0.8, (84, 255, 159), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "Face Recognition", (20, 40), font, 1, (0, 0, 0), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "Faces: " + str(len(faces)), (20, 100), font, 1, (0, 0, 255), 1, cv2.LINE_AA)
|
||||
|
||||
# 窗口显示
|
||||
cv2.imshow("camera", img_rd)
|
||||
|
||||
# 释放摄像头
|
||||
cap.release()
|
||||
|
||||
# 删除建立的窗口
|
||||
cv2.destroyAllWindows()
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
285
face_reco_from_camera_ot_multi_people.py
Normal file
@ -0,0 +1,285 @@
|
||||
# Copyright (C) 2020 coneypo
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
# Author: coneypo
|
||||
# Blog: http://www.cnblogs.com/AdaminXie
|
||||
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
|
||||
# Mail: coneypo@foxmail.com
|
||||
|
||||
# 利用 OT 人脸追踪, 实时人脸识别 / Real-time face detection and recognition via OT for single face
|
||||
|
||||
import dlib
|
||||
import numpy as np
|
||||
import cv2
|
||||
import os
|
||||
import pandas as pd
|
||||
import time
|
||||
|
||||
# Dlib 正向人脸检测器 / Use frontal face detector of Dlib
|
||||
detector = dlib.get_frontal_face_detector()
|
||||
|
||||
# Dlib 人脸 landmark 特征点检测器 / Get face landmarks
|
||||
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
|
||||
|
||||
# Dlib Resnet 人脸识别模型,提取 128D 的特征矢量 / Use Dlib resnet50 model to get 128D face descriptor
|
||||
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
|
||||
|
||||
|
||||
class Face_Recognizer:
|
||||
def __init__(self):
|
||||
self.font = cv2.FONT_ITALIC
|
||||
|
||||
# For FPS
|
||||
self.frame_time = 0
|
||||
self.frame_start_time = 0
|
||||
self.fps = 0
|
||||
|
||||
# cnt for frame
|
||||
self.frame_cnt = 0
|
||||
|
||||
# 用来存放所有录入人脸特征的数组 / Save the features of faces in the database
|
||||
self.features_known_list = []
|
||||
# 存储录入人脸名字 / Save the name of faces in the database
|
||||
self.name_known_list = []
|
||||
|
||||
# 用来存储上一帧和当前帧 ROI 的质心坐标 / List to save centroid positions of ROI in frame N-1 and N
|
||||
self.last_frame_centroid_list = []
|
||||
self.current_frame_centroid_list = []
|
||||
|
||||
# 用来存储上一帧和当前帧检测出目标的名字 / List to save names of objects in frame N-1 and N
|
||||
self.last_frame_names_list = []
|
||||
self.current_frame_face_name_list = []
|
||||
|
||||
# 上一帧和当前帧中人脸数的计数器 / cnt for faces in frame N-1 and N
|
||||
self.last_frame_face_cnt = 0
|
||||
self.current_frame_face_cnt = 0
|
||||
|
||||
# 用来存放进行识别时候对比的欧氏距离 / Save the e-distance for faceX when recognizing
|
||||
self.current_frame_face_X_e_distance_list = []
|
||||
|
||||
# 存储当前摄像头中捕获到的所有人脸的坐标名字 / Save the positions and names of current faces captured
|
||||
self.current_frame_face_position_list = []
|
||||
# 存储当前摄像头中捕获到的人脸特征 / Save the features of people in current frame
|
||||
self.current_frame_face_features_list = []
|
||||
|
||||
# e distance between centroid of ROI in last and current frame
|
||||
self.last_current_frame_centroid_e_distance = 0
|
||||
|
||||
# 从 "features_all.csv" 读取录入人脸特征 / Get known faces from "features_all.csv"
|
||||
def get_face_database(self):
|
||||
if os.path.exists("data/features_all.csv"):
|
||||
path_features_known_csv = "data/features_all.csv"
|
||||
csv_rd = pd.read_csv(path_features_known_csv, header=None)
|
||||
for i in range(csv_rd.shape[0]):
|
||||
features_someone_arr = []
|
||||
for j in range(0, 128):
|
||||
if csv_rd.iloc[i][j] == '':
|
||||
features_someone_arr.append('0')
|
||||
else:
|
||||
features_someone_arr.append(csv_rd.iloc[i][j])
|
||||
self.features_known_list.append(features_someone_arr)
|
||||
self.name_known_list.append("Person_" + str(i + 1))
|
||||
print("Faces in Database:", len(self.features_known_list))
|
||||
return 1
|
||||
else:
|
||||
print('##### Warning #####', '\n')
|
||||
print("'features_all.csv' not found!")
|
||||
print(
|
||||
"Please run 'get_faces_from_camera.py' and 'features_extraction_to_csv.py' before 'face_reco_from_camera.py'",
|
||||
'\n')
|
||||
print('##### End Warning #####')
|
||||
return 0
|
||||
|
||||
# 获取处理之后 stream 的帧数 / Get the fps of video stream
|
||||
def update_fps(self):
|
||||
now = time.time()
|
||||
self.frame_time = now - self.frame_start_time
|
||||
self.fps = 1.0 / self.frame_time
|
||||
self.frame_start_time = now
|
||||
# 计算两个128D向量间的欧式距离 / Compute the e-distance between two 128D features
|
||||
|
||||
@staticmethod
|
||||
def return_euclidean_distance(feature_1, feature_2):
|
||||
feature_1 = np.array(feature_1)
|
||||
feature_2 = np.array(feature_2)
|
||||
dist = np.sqrt(np.sum(np.square(feature_1 - feature_2)))
|
||||
return dist
|
||||
|
||||
# / Use centroid tracker to link face_x in current frame with person_x in last frame
|
||||
def centroid_tracker(self):
|
||||
for i in range(len(self.current_frame_centroid_list)):
|
||||
e_distance_current_frame_person_x_list = []
|
||||
# For object 1 in current_frame, compute e-distance with object 1/2/3/4/... in last frame
|
||||
for j in range(len(self.last_frame_centroid_list)):
|
||||
self.last_current_frame_centroid_e_distance = self.return_euclidean_distance(
|
||||
self.current_frame_centroid_list[i], self.last_frame_centroid_list[j])
|
||||
|
||||
e_distance_current_frame_person_x_list.append(
|
||||
self.last_current_frame_centroid_e_distance)
|
||||
|
||||
last_frame_num = e_distance_current_frame_person_x_list.index(
|
||||
min(e_distance_current_frame_person_x_list))
|
||||
self.current_frame_face_name_list[i] = self.last_frame_face_name_list[last_frame_num]
|
||||
|
||||
# 生成的 cv2 window 上面添加说明文字 / putText on cv2 window
|
||||
def draw_note(self, img_rd):
|
||||
# 添加说明 / Add some statements
|
||||
cv2.putText(img_rd, "Face recognizer with OT", (20, 40), self.font, 1, (255, 255, 255), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(2)), (20, 100), self.font, 0.8, (0, 255, 0), 1,
|
||||
cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "Faces: " + str(self.current_frame_face_cnt), (20, 130), self.font, 0.8, (0, 255, 0), 1,
|
||||
cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "Q: Quit", (20, 450), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
|
||||
|
||||
for i in range(len(self.current_frame_face_name_list)):
|
||||
cv2.putText(img_rd, "Face " + str(i + 1), tuple(
|
||||
[int(self.current_frame_centroid_list[i][0]), int(self.current_frame_centroid_list[i][1])]), self.font,
|
||||
0.8, (255, 190, 0),
|
||||
1,
|
||||
cv2.LINE_AA)
|
||||
|
||||
# 处理获取的视频流,进行人脸识别 / Face detection and recognition wit OT from input video stream
|
||||
def process(self, stream):
|
||||
# 1. 读取存放所有人脸特征的 csv / Get faces known from "features.all.csv"
|
||||
if self.get_face_database():
|
||||
while stream.isOpened():
|
||||
self.frame_cnt += 1
|
||||
print(">>> Frame " + str(self.frame_cnt) + " starts")
|
||||
flag, img_rd = stream.read()
|
||||
kk = cv2.waitKey(1)
|
||||
|
||||
# 2. 检测人脸 / Detect faces for frame X
|
||||
faces = detector(img_rd, 0)
|
||||
if self.current_frame_face_name_list == ['Person_2', 'Person_2']:
|
||||
break
|
||||
|
||||
# Update cnt for faces in frames
|
||||
self.last_frame_face_cnt = self.current_frame_face_cnt
|
||||
self.current_frame_face_cnt = len(faces)
|
||||
# Update the face name list in last frame
|
||||
self.last_frame_face_name_list = self.current_frame_face_name_list[:]
|
||||
# update frame centroid list
|
||||
self.last_frame_centroid_list = self.current_frame_centroid_list
|
||||
self.current_frame_centroid_list = []
|
||||
print(" >>> current_frame_face_cnt: ", self.current_frame_face_cnt)
|
||||
|
||||
# 2.1. if cnt not changes
|
||||
if self.current_frame_face_cnt == self.last_frame_face_cnt:
|
||||
print(" >>> scene 1: 当前帧和上一帧相比没有发生人脸数变化 / no faces cnt changes in this frame!!!")
|
||||
self.current_frame_face_position_list = []
|
||||
if self.current_frame_face_cnt != 0:
|
||||
# 2.1.1 Get ROI positions
|
||||
for k, d in enumerate(faces):
|
||||
self.current_frame_face_position_list.append(tuple(
|
||||
[faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)]))
|
||||
self.current_frame_centroid_list.append(
|
||||
[int(faces[k].left() + faces[k].right()) / 2,
|
||||
int(faces[k].top() + faces[k].bottom()) / 2])
|
||||
|
||||
# 计算矩形框大小 / Compute the size of rectangle box
|
||||
height = (d.bottom() - d.top())
|
||||
width = (d.right() - d.left())
|
||||
hh = int(height / 2)
|
||||
ww = int(width / 2)
|
||||
cv2.rectangle(img_rd,
|
||||
tuple([d.left() - ww, d.top() - hh]),
|
||||
tuple([d.right() + ww, d.bottom() + hh]),
|
||||
(255, 255, 255), 2)
|
||||
|
||||
# multi-faces in current frames, use centroid tracker to track
|
||||
if self.current_frame_face_cnt != 1:
|
||||
self.centroid_tracker()
|
||||
|
||||
for i in range(self.current_frame_face_cnt):
|
||||
# 6.2 write names under ROI
|
||||
cv2.putText(img_rd, self.current_frame_face_name_list[i],
|
||||
self.current_frame_face_position_list[i], self.font, 0.8, (0, 255, 255), 1,
|
||||
cv2.LINE_AA)
|
||||
|
||||
# 2.2 if cnt of faces changes, 0->1 or 1->0 or ...
|
||||
else:
|
||||
print(" >>> scene 2: 当前帧和上一帧相比人脸数发生变化 / Faces cnt changes in this frame")
|
||||
self.current_frame_face_position_list = []
|
||||
self.current_frame_face_X_e_distance_list = []
|
||||
|
||||
# 2.2.1 face cnt decrease: 1->0, 2->1, ...
|
||||
if self.current_frame_face_cnt == 0:
|
||||
print(" >>> scene 2.1 人脸消失, 当前帧中没有人脸 / No guy in this frame!!!")
|
||||
# clear list of names and features
|
||||
self.current_frame_face_name_list = []
|
||||
self.current_frame_face_features_list = []
|
||||
|
||||
# 2.2.2 face cnt increase: 0->1, 0->2, ..., 1->2, ...
|
||||
else:
|
||||
print(" >>> scene 2.2 出现人脸,进行人脸识别 / Do face recognition for people detected in this frame")
|
||||
self.current_frame_face_name_list = []
|
||||
for i in range(len(faces)):
|
||||
shape = predictor(img_rd, faces[i])
|
||||
self.current_frame_face_features_list.append(
|
||||
face_reco_model.compute_face_descriptor(img_rd, shape))
|
||||
self.current_frame_face_name_list.append("unknown")
|
||||
|
||||
# 2.2.2.1 遍历捕获到的图像中所有的人脸 / Traversal all the faces in the database
|
||||
for k in range(len(faces)):
|
||||
print(" >>> For face " + str(k+1) + " in current frame:")
|
||||
self.current_frame_centroid_list.append(
|
||||
[int(faces[k].left() + faces[k].right()) / 2,
|
||||
int(faces[k].top() + faces[k].bottom()) / 2])
|
||||
|
||||
self.current_frame_face_X_e_distance_list = []
|
||||
|
||||
# 2.2.2.2 每个捕获人脸的名字坐标 / Positions of faces captured
|
||||
self.current_frame_face_position_list.append(tuple(
|
||||
[faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)]))
|
||||
|
||||
# 2.2.2.3 对于某张人脸,遍历所有存储的人脸特征
|
||||
# For every faces detected, compare the faces in the database
|
||||
for i in range(len(self.features_known_list)):
|
||||
# 如果 person_X 数据不为空
|
||||
if str(self.features_known_list[i][0]) != '0.0':
|
||||
print(" >>> with person", str(i + 1), "the e distance: ", end='')
|
||||
e_distance_tmp = self.return_euclidean_distance(
|
||||
self.current_frame_face_features_list[k],
|
||||
self.features_known_list[i])
|
||||
print(e_distance_tmp)
|
||||
self.current_frame_face_X_e_distance_list.append(e_distance_tmp)
|
||||
else:
|
||||
# 空数据 person_X
|
||||
self.current_frame_face_X_e_distance_list.append(999999999)
|
||||
|
||||
# 2.2.2.4 寻找出最小的欧式距离匹配 / Find the one with minimum e distance
|
||||
similar_person_num = self.current_frame_face_X_e_distance_list.index(
|
||||
min(self.current_frame_face_X_e_distance_list))
|
||||
|
||||
if min(self.current_frame_face_X_e_distance_list) < 0.4:
|
||||
self.current_frame_face_name_list[k] = self.name_known_list[similar_person_num]
|
||||
print(" >>> recognition result for face " + str(k+1) +": "+ self.name_known_list[similar_person_num])
|
||||
else:
|
||||
print(" >>> recognition result for face " + str(k + 1) + ": " + "unknown")
|
||||
# 3. 生成的窗口添加说明文字 / Add note on cv2 window
|
||||
self.draw_note(img_rd)
|
||||
|
||||
# 4. 按下 'q' 键退出 / Press 'q' to exit
|
||||
if kk == ord('q'):
|
||||
break
|
||||
|
||||
self.update_fps()
|
||||
cv2.namedWindow("camera", 1)
|
||||
cv2.imshow("camera", img_rd)
|
||||
print(">>> Frame ends\n\n")
|
||||
|
||||
def run(self):
|
||||
cap = cv2.VideoCapture(0)
|
||||
self.process(cap)
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
def main():
|
||||
Face_Recognizer_con = Face_Recognizer()
|
||||
Face_Recognizer_con.run()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
247
face_reco_from_camera_ot_single_person.py
Normal file
@ -0,0 +1,247 @@
|
||||
# Copyright (C) 2020 coneypo
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
# Author: coneypo
|
||||
# Blog: http://www.cnblogs.com/AdaminXie
|
||||
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
|
||||
# Mail: coneypo@foxmail.com
|
||||
|
||||
# 利用 OT 对于单张人脸追踪, 实时人脸识别 / Real-time face detection and recognition via OT for single face
|
||||
|
||||
import dlib
|
||||
import numpy as np
|
||||
import cv2
|
||||
import os
|
||||
import pandas as pd
|
||||
import time
|
||||
|
||||
# Dlib 正向人脸检测器 / Use frontal face detector of Dlib
|
||||
detector = dlib.get_frontal_face_detector()
|
||||
|
||||
# Dlib 人脸 landmark 特征点检测器 / Get face landmarks
|
||||
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
|
||||
|
||||
# Dlib Resnet 人脸识别模型,提取 128D 的特征矢量 / Use Dlib resnet50 model to get 128D face descriptor
|
||||
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
|
||||
|
||||
|
||||
class Face_Recognizer:
|
||||
def __init__(self):
|
||||
self.font = cv2.FONT_ITALIC
|
||||
|
||||
# For FPS
|
||||
self.frame_time = 0
|
||||
self.frame_start_time = 0
|
||||
self.fps = 0
|
||||
|
||||
# cnt for frame
|
||||
self.frame_cnt = 0
|
||||
|
||||
# 用来存储所有录入人脸特征的数组 / Save the features of faces in the database
|
||||
self.features_known_list = []
|
||||
# 用来存储录入人脸名字 / Save the name of faces in the database
|
||||
self.name_known_list = []
|
||||
|
||||
# 用来存储上一帧和当前帧 ROI 的质心坐标 / List to save centroid positions of ROI in frame N-1 and N
|
||||
self.last_frame_centroid_list = []
|
||||
self.current_frame_centroid_list = []
|
||||
|
||||
# 用来存储上一帧和当前帧检测出目标的名字 / List to save names of objects in frame N-1 and N
|
||||
self.last_frame_names_list = []
|
||||
self.current_frame_face_names_list = []
|
||||
|
||||
# 上一帧和当前帧中人脸数的计数器 / cnt for faces in frame N-1 and N
|
||||
self.last_frame_faces_cnt = 0
|
||||
self.current_frame_face_cnt = 0
|
||||
|
||||
# 用来存放进行识别时候对比的欧氏距离 / Save the e-distance for faceX when recognizing
|
||||
self.current_frame_face_X_e_distance_list = []
|
||||
|
||||
# 存储当前摄像头中捕获到的所有人脸的坐标名字 / Save the positions and names of current faces captured
|
||||
self.current_frame_face_position_list = []
|
||||
# 存储当前摄像头中捕获到的人脸特征 / Save the features of people in current frame
|
||||
self.current_frame_face_features_list = []
|
||||
|
||||
# 从 "features_all.csv" 读取录入人脸特征 / Get known faces from "features_all.csv"
|
||||
def get_face_database(self):
|
||||
if os.path.exists("data/features_all.csv"):
|
||||
path_features_known_csv = "data/features_all.csv"
|
||||
csv_rd = pd.read_csv(path_features_known_csv, header=None)
|
||||
for i in range(csv_rd.shape[0]):
|
||||
features_someone_arr = []
|
||||
for j in range(0, 128):
|
||||
if csv_rd.iloc[i][j] == '':
|
||||
features_someone_arr.append('0')
|
||||
else:
|
||||
features_someone_arr.append(csv_rd.iloc[i][j])
|
||||
self.features_known_list.append(features_someone_arr)
|
||||
self.name_known_list.append("Person_" + str(i + 1))
|
||||
print("Faces in Database:", len(self.features_known_list))
|
||||
return 1
|
||||
else:
|
||||
print('##### Warning #####', '\n')
|
||||
print("'features_all.csv' not found!")
|
||||
print(
|
||||
"Please run 'get_faces_from_camera.py' and 'features_extraction_to_csv.py' before 'face_reco_from_camera.py'",
|
||||
'\n')
|
||||
print('##### End Warning #####')
|
||||
return 0
|
||||
|
||||
# 计算两个128D向量间的欧式距离 / Compute the e-distance between two 128D features
|
||||
|
||||
# 更新 FPS / Update FPS of Video stream
|
||||
def update_fps(self):
|
||||
now = time.time()
|
||||
self.frame_time = now - self.frame_start_time
|
||||
self.fps = 1.0 / self.frame_time
|
||||
self.frame_start_time = now
|
||||
# 计算两个128D向量间的欧式距离 / Compute the e-distance between two 128D features
|
||||
|
||||
@staticmethod
|
||||
def return_euclidean_distance(feature_1, feature_2):
|
||||
feature_1 = np.array(feature_1)
|
||||
feature_2 = np.array(feature_2)
|
||||
dist = np.sqrt(np.sum(np.square(feature_1 - feature_2)))
|
||||
return dist
|
||||
|
||||
# 生成的 cv2 window 上面添加说明文字 / putText on cv2 window
|
||||
def draw_note(self, img_rd):
|
||||
# 添加说明 / Add some statements
|
||||
cv2.putText(img_rd, "Face Recognizer with OT (one person)", (20, 40), self.font, 1, (255, 255, 255), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(2)), (20, 100), self.font, 0.8, (0, 255, 0), 1,
|
||||
cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "Q: Quit", (20, 450), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
|
||||
|
||||
# 处理获取的视频流,进行人脸识别 / Face detection and recognition wit OT from input video stream
|
||||
def process(self, stream):
|
||||
# 1. 读取存放所有人脸特征的 csv / Get faces known from "features.all.csv"
|
||||
if self.get_face_database():
|
||||
while stream.isOpened():
|
||||
self.frame_cnt += 1
|
||||
print(">>> Frame " + str(self.frame_cnt) + " starts")
|
||||
flag, img_rd = stream.read()
|
||||
kk = cv2.waitKey(1)
|
||||
|
||||
# 2. 检测人脸 / Detect faces for frame X
|
||||
faces = detector(img_rd, 0)
|
||||
|
||||
# Update cnt for faces in frames
|
||||
self.last_frame_faces_cnt = self.current_frame_face_cnt
|
||||
self.current_frame_face_cnt = len(faces)
|
||||
print(" >>> current_frame_face_cnt: ", self.current_frame_face_cnt)
|
||||
|
||||
# 2.1 If cnt not changes, 1->1 or 0->0
|
||||
if self.current_frame_face_cnt == self.last_frame_faces_cnt:
|
||||
print(" >>> scene 1: 当前帧和上一帧相比没有发生人脸数变化 / no faces cnt changes in this frame!!!")
|
||||
# One face in this frame
|
||||
if self.current_frame_face_cnt != 0:
|
||||
# 2.1.1 Get ROI positions
|
||||
for k, d in enumerate(faces):
|
||||
# 计算矩形框大小 / Compute the size of rectangle box
|
||||
height = (d.bottom() - d.top())
|
||||
width = (d.right() - d.left())
|
||||
hh = int(height / 2)
|
||||
ww = int(width / 2)
|
||||
|
||||
cv2.rectangle(img_rd,
|
||||
tuple([d.left() - ww, d.top() - hh]),
|
||||
tuple([d.right() + ww, d.bottom() + hh]),
|
||||
(255, 255, 255), 2)
|
||||
|
||||
self.current_frame_face_position_list[k] = tuple(
|
||||
[faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)])
|
||||
|
||||
print(" >>> self.current_frame_face_names_list[k]: ",
|
||||
self.current_frame_face_names_list[k])
|
||||
print(" >>> self.current_frame_face_position_list[k]: ",
|
||||
self.current_frame_face_position_list[k])
|
||||
|
||||
# 2.1.2 写名字 / Write names under ROI
|
||||
cv2.putText(img_rd, self.current_frame_face_names_list[k],
|
||||
self.current_frame_face_position_list[k], self.font, 0.8, (0, 255, 255), 1,
|
||||
cv2.LINE_AA)
|
||||
|
||||
# 2.2 if cnt of faces changes, 0->1 or 1->0
|
||||
else:
|
||||
print(" >>> scene 2: 当前帧和上一帧相比人脸数发生变化 / Faces cnt changes in this frame")
|
||||
self.current_frame_face_position_list = []
|
||||
self.current_frame_face_X_e_distance_list = []
|
||||
|
||||
# 2.2.1 face cnt: 1->0, no faces in this frame
|
||||
if self.current_frame_face_cnt == 0:
|
||||
print(" >>> scene 2.1 人脸消失, 当前帧中没有人脸 / no guy in this frame!!!")
|
||||
# clear list of names and
|
||||
self.current_frame_face_names_list = []
|
||||
self.current_frame_face_features_list = []
|
||||
|
||||
# 2.2.2 face cnt: 0->1, get the new face
|
||||
elif self.current_frame_face_cnt == 1:
|
||||
print(" >>> scene 2.2 出现人脸,进行人脸识别 / Get person in this frame and do face recognition")
|
||||
self.current_frame_face_names_list = []
|
||||
|
||||
for i in range(len(faces)):
|
||||
shape = predictor(img_rd, faces[i])
|
||||
self.current_frame_face_features_list.append(
|
||||
face_reco_model.compute_face_descriptor(img_rd, shape))
|
||||
|
||||
# 2.2.2.1 遍历捕获到的图像中所有的人脸 / Traversal all the faces in the database
|
||||
for k in range(len(faces)):
|
||||
self.current_frame_face_names_list.append("unknown")
|
||||
|
||||
# 2.2.2.2 每个捕获人脸的名字坐标 / Positions of faces captured
|
||||
self.current_frame_face_position_list.append(tuple(
|
||||
[faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)]))
|
||||
|
||||
# 2.2.2.3 对于某张人脸,遍历所有存储的人脸特征
|
||||
# For every faces detected, compare the faces in the database
|
||||
for i in range(len(self.features_known_list)):
|
||||
# 如果 person_X 数据不为空
|
||||
if str(self.features_known_list[i][0]) != '0.0':
|
||||
print(" >>> with person", str(i + 1), "the e distance: ", end='')
|
||||
e_distance_tmp = self.return_euclidean_distance(
|
||||
self.current_frame_face_features_list[k],
|
||||
self.features_known_list[i])
|
||||
print(e_distance_tmp)
|
||||
self.current_frame_face_X_e_distance_list.append(e_distance_tmp)
|
||||
else:
|
||||
# 空数据 person_X
|
||||
self.current_frame_face_X_e_distance_list.append(999999999)
|
||||
|
||||
# 2.2.2.4 寻找出最小的欧式距离匹配 / Find the one with minimum e distance
|
||||
similar_person_num = self.current_frame_face_X_e_distance_list.index(min(self.current_frame_face_X_e_distance_list))
|
||||
|
||||
if min(self.current_frame_face_X_e_distance_list) < 0.4:
|
||||
self.current_frame_face_names_list[k] = self.name_known_list[similar_person_num]
|
||||
print(" >>> recognition result for face " + str(k + 1) + ": " +
|
||||
self.name_known_list[similar_person_num])
|
||||
else:
|
||||
print(" >>> recognition result for face " + str(k + 1) + ": " + "unknown")
|
||||
|
||||
# 3. 生成的窗口添加说明文字 / Add note on cv2 window
|
||||
self.draw_note(img_rd)
|
||||
|
||||
if kk == ord('q'):
|
||||
break
|
||||
|
||||
self.update_fps()
|
||||
|
||||
cv2.namedWindow("camera", 1)
|
||||
cv2.imshow("camera", img_rd)
|
||||
|
||||
print(">>> Frame ends\n\n")
|
||||
|
||||
def run(self):
|
||||
cap = cv2.VideoCapture(0)
|
||||
self.process(cap)
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
def main():
|
||||
Face_Recognizer_con = Face_Recognizer()
|
||||
Face_Recognizer_con.run()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
95
features_extraction_to_csv.py
Executable file
@ -0,0 +1,95 @@
|
||||
# Copyright (C) 2020 coneypo
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
# Author: coneypo
|
||||
# Blog: http://www.cnblogs.com/AdaminXie
|
||||
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
|
||||
# Mail: coneypo@foxmail.com
|
||||
|
||||
# 从人脸图像文件中提取人脸特征存入 "features_all.csv" / Extract features from images and save into "features_all.csv"
|
||||
|
||||
import os
|
||||
import dlib
|
||||
from skimage import io
|
||||
import csv
|
||||
import numpy as np
|
||||
|
||||
# 要读取人脸图像文件的路径 / Path of cropped faces
|
||||
path_images_from_camera = "data/data_faces_from_camera/"
|
||||
|
||||
# Dlib 正向人脸检测器 / Use frontal face detector of Dlib
|
||||
detector = dlib.get_frontal_face_detector()
|
||||
|
||||
# Dlib 人脸 landmark 特征点检测器 / Get face landmarks
|
||||
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
|
||||
|
||||
# Dlib Resnet 人脸识别模型,提取 128D 的特征矢量 / Use Dlib resnet50 model to get 128D face descriptor
|
||||
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
|
||||
|
||||
|
||||
# 返回单张图像的 128D 特征 / Return 128D features for single image
|
||||
# Input: path_img <class 'str'>
|
||||
# Output: face_descriptor <class 'dlib.vector'>
|
||||
def return_128d_features(path_img):
|
||||
img_rd = io.imread(path_img)
|
||||
faces = detector(img_rd, 1)
|
||||
|
||||
print("%-40s %-20s" % ("检测到人脸的图像 / Image with faces detected:", path_img), '\n')
|
||||
|
||||
# 因为有可能截下来的人脸再去检测,检测不出来人脸了, 所以要确保是 检测到人脸的人脸图像拿去算特征
|
||||
# For photos of faces saved, we need to make sure that we can detect faces from the cropped images
|
||||
if len(faces) != 0:
|
||||
shape = predictor(img_rd, faces[0])
|
||||
face_descriptor = face_reco_model.compute_face_descriptor(img_rd, shape)
|
||||
else:
|
||||
face_descriptor = 0
|
||||
print("no face")
|
||||
return face_descriptor
|
||||
|
||||
|
||||
# 返回 personX 的 128D 特征均值 / Return the mean value of 128D face descriptor for person X
|
||||
# Input: path_faces_personX <class 'str'>
|
||||
# Output: features_mean_personX <class 'numpy.ndarray'>
|
||||
def return_features_mean_personX(path_faces_personX):
|
||||
features_list_personX = []
|
||||
photos_list = os.listdir(path_faces_personX)
|
||||
if photos_list:
|
||||
for i in range(len(photos_list)):
|
||||
# 调用 return_128d_features() 得到 128D 特征 / Get 128D features for single image of personX
|
||||
print("%-40s %-20s" % ("正在读的人脸图像 / Reading image:", path_faces_personX + "/" + photos_list[i]))
|
||||
features_128d = return_128d_features(path_faces_personX + "/" + photos_list[i])
|
||||
# 遇到没有检测出人脸的图片跳过 / Jump if no face detected from image
|
||||
if features_128d == 0:
|
||||
i += 1
|
||||
else:
|
||||
features_list_personX.append(features_128d)
|
||||
else:
|
||||
print("文件夹内图像文件为空 / Warning: No images in " + path_faces_personX + '/', '\n')
|
||||
|
||||
# 计算 128D 特征的均值 / Compute the mean
|
||||
# personX 的 N 张图像 x 128D -> 1 x 128D
|
||||
if features_list_personX:
|
||||
features_mean_personX = np.array(features_list_personX).mean(axis=0)
|
||||
else:
|
||||
features_mean_personX = np.zeros(128, dtype=int, order='C')
|
||||
print(type(features_mean_personX))
|
||||
return features_mean_personX
|
||||
|
||||
|
||||
# 获取已录入的最后一个人脸序号 / Get the order of latest person
|
||||
person_list = os.listdir("data/data_faces_from_camera/")
|
||||
person_num_list = []
|
||||
for person in person_list:
|
||||
person_num_list.append(int(person.split('_')[-1]))
|
||||
person_cnt = max(person_num_list)
|
||||
|
||||
with open("data/features_all.csv", "w", newline="") as csvfile:
|
||||
writer = csv.writer(csvfile)
|
||||
for person in range(person_cnt):
|
||||
# Get the mean/average features of face/personX, it will be a list with a length of 128D
|
||||
print(path_images_from_camera + "person_" + str(person + 1))
|
||||
features_mean_personX = return_features_mean_personX(path_images_from_camera + "person_" + str(person + 1))
|
||||
writer.writerow(features_mean_personX)
|
||||
print("特征均值 / The mean of features:", list(features_mean_personX))
|
||||
print('\n')
|
||||
print("所有录入人脸数据存入 / Save all the features of faces registered into: data/features_all.csv")
|
||||
304
get_faces_from_camera.py
Normal file → Executable file
@ -1,186 +1,188 @@
|
||||
# 进行人脸录入 / face register
|
||||
# 录入多张人脸 / support multi-faces
|
||||
# Copyright (C) 2020 coneypo
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
# Author: coneypo
|
||||
# Blog: http://www.cnblogs.com/AdaminXie
|
||||
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
|
||||
# Mail: coneypo@foxmail.com
|
||||
|
||||
# Created at 2018-05-11
|
||||
# Updated at 2019-02-21
|
||||
# 进行人脸录入 / Face register
|
||||
|
||||
import dlib # 人脸处理的库 Dlib
|
||||
import numpy as np # 数据处理的库 Numpy
|
||||
import cv2 # 图像处理的库 OpenCv
|
||||
import dlib
|
||||
import numpy as np
|
||||
import cv2
|
||||
import os
|
||||
import shutil
|
||||
import time
|
||||
|
||||
import os # 读写文件
|
||||
import shutil # 读写文件
|
||||
|
||||
# Dlib 正向人脸检测器
|
||||
# Dlib 正向人脸检测器 / Use frontal face detector of Dlib
|
||||
detector = dlib.get_frontal_face_detector()
|
||||
|
||||
# Dlib 68 点特征预测器
|
||||
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
|
||||
|
||||
# OpenCv 调用摄像头
|
||||
cap = cv2.VideoCapture(0)
|
||||
class Face_Register:
|
||||
def __init__(self):
|
||||
self.path_photos_from_camera = "data/data_faces_from_camera/"
|
||||
self.font = cv2.FONT_ITALIC
|
||||
|
||||
# 设置视频参数
|
||||
cap.set(3, 480)
|
||||
self.existing_faces_cnt = 0 # 已录入的人脸计数器 / cnt for counting saved faces
|
||||
self.ss_cnt = 0 # 录入 personX 人脸时图片计数器 / cnt for screen shots
|
||||
self.current_frame_faces_cnt = 0 # 录入人脸计数器 / cnt for counting faces in current frame
|
||||
|
||||
# 人脸截图的计数器
|
||||
cnt_ss = 0
|
||||
self.save_flag = 1 # 之后用来控制是否保存图像的 flag / The flag to control if save
|
||||
self.press_n_flag = 0 # 之后用来检查是否先按 'n' 再按 's' / The flag to check if press 'n' before 's'
|
||||
|
||||
# 存储人脸的文件夹
|
||||
current_face_dir = 0
|
||||
# FPS
|
||||
self.frame_time = 0
|
||||
self.frame_start_time = 0
|
||||
self.fps = 0
|
||||
|
||||
# 保存 photos/csv 的路径
|
||||
path_photos_from_camera = "data/data_faces_from_camera/"
|
||||
path_csv_from_photos = "data/data_csvs_from_camera/"
|
||||
# 新建保存人脸图像文件和数据CSV文件夹 / Make dir for saving photos and csv
|
||||
def pre_work_mkdir(self):
|
||||
# 新建文件夹 / Create folders to save faces images and csv
|
||||
if os.path.isdir(self.path_photos_from_camera):
|
||||
pass
|
||||
else:
|
||||
os.mkdir(self.path_photos_from_camera)
|
||||
|
||||
# 删除之前存的人脸数据文件夹 / Delete the old data of faces
|
||||
def pre_work_del_old_face_folders(self):
|
||||
# 删除之前存的人脸数据文件夹, 删除 "/data_faces_from_camera/person_x/"...
|
||||
folders_rd = os.listdir(self.path_photos_from_camera)
|
||||
for i in range(len(folders_rd)):
|
||||
shutil.rmtree(self.path_photos_from_camera+folders_rd[i])
|
||||
if os.path.isfile("data/features_all.csv"):
|
||||
os.remove("data/features_all.csv")
|
||||
|
||||
# 新建保存人脸图像文件和数据CSV文件夹
|
||||
def pre_work_mkdir():
|
||||
# 如果有之前录入的人脸, 在之前 person_x 的序号按照 person_x+1 开始录入 / Start from person_x+1
|
||||
def check_existing_faces_cnt(self):
|
||||
if os.listdir("data/data_faces_from_camera/"):
|
||||
# 获取已录入的最后一个人脸序号 / Get the order of latest person
|
||||
person_list = os.listdir("data/data_faces_from_camera/")
|
||||
person_num_list = []
|
||||
for person in person_list:
|
||||
person_num_list.append(int(person.split('_')[-1]))
|
||||
self.existing_faces_cnt = max(person_num_list)
|
||||
|
||||
# 新建文件夹
|
||||
if os.path.isdir(path_photos_from_camera):
|
||||
pass
|
||||
else:
|
||||
os.mkdir(path_photos_from_camera)
|
||||
if os.path.isdir(path_csv_from_photos):
|
||||
pass
|
||||
else:
|
||||
os.mkdir(path_csv_from_photos)
|
||||
# 如果第一次存储或者没有之前录入的人脸, 按照 person_1 开始录入 / Start from person_1
|
||||
else:
|
||||
self.existing_faces_cnt = 0
|
||||
|
||||
# 获取处理之后 stream 的帧数 / Update FPS of video stream
|
||||
def update_fps(self):
|
||||
now = time.time()
|
||||
self.frame_time = now - self.frame_start_time
|
||||
self.fps = 1.0 / self.frame_time
|
||||
self.frame_start_time = now
|
||||
|
||||
pre_work_mkdir()
|
||||
# 生成的 cv2 window 上面添加说明文字 / PutText on cv2 window
|
||||
def draw_note(self, img_rd):
|
||||
# 添加说明 / Add some notes
|
||||
cv2.putText(img_rd, "Face Register", (20, 40), self.font, 1, (255, 255, 255), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(2)), (20, 100), self.font, 0.8, (0, 255, 0), 1,
|
||||
cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "Faces: " + str(self.current_frame_faces_cnt), (20, 140), self.font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "N: Create face folder", (20, 350), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "S: Save current face", (20, 400), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "Q: Quit", (20, 450), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
|
||||
|
||||
# 获取人脸 / Main process of face detection and saving
|
||||
def process(self, stream):
|
||||
# 1. 新建储存人脸图像文件目录 / Create folders to save photos
|
||||
self.pre_work_mkdir()
|
||||
|
||||
##### optional/可选, 默认关闭 #####
|
||||
# 删除之前存的人脸数据文件夹
|
||||
def pre_work_deldir():
|
||||
# 删除之前存的人脸数据文件夹
|
||||
# 删除 "/data_faces_from_camera/person_x/"...
|
||||
folders_rd = os.listdir(path_photos_from_camera)
|
||||
for i in range(len(folders_rd)):
|
||||
shutil.rmtree(path_photos_from_camera+folders_rd[i])
|
||||
# 2. 删除 "/data/data_faces_from_camera" 中已有人脸图像文件 / Uncomment if want to delete the saved faces and start from person_1
|
||||
if os.path.isdir(self.path_photos_from_camera):
|
||||
self.pre_work_del_old_face_folders()
|
||||
|
||||
csv_rd = os.listdir(path_csv_from_photos)
|
||||
for i in range(len(csv_rd)):
|
||||
os.remove(path_csv_from_photos+csv_rd[i])
|
||||
# 3. 检查 "/data/data_faces_from_camera" 中已有人脸文件
|
||||
self.check_existing_faces_cnt()
|
||||
|
||||
# 这里在每次程序录入之前, 删掉之前存的人脸数据
|
||||
# 如果这里打开,每次进行人脸录入的时候都会删掉之前的人脸图像文件夹
|
||||
# pre_work_deldir()
|
||||
##################################
|
||||
while stream.isOpened():
|
||||
flag, img_rd = stream.read() # Get camera video stream
|
||||
kk = cv2.waitKey(1)
|
||||
faces = detector(img_rd, 0) # Use Dlib face detector
|
||||
|
||||
# 4. 按下 'n' 新建存储人脸的文件夹 / Press 'n' to create the folders for saving faces
|
||||
if kk == ord('n'):
|
||||
self.existing_faces_cnt += 1
|
||||
current_face_dir = self.path_photos_from_camera + "person_" + str(self.existing_faces_cnt)
|
||||
os.makedirs(current_face_dir)
|
||||
print('\n')
|
||||
print("新建的人脸文件夹 / Create folders: ", current_face_dir)
|
||||
|
||||
# 如果有之前录入的人脸
|
||||
# 在之前 person_x 的序号按照 person_x+1 开始录入
|
||||
if os.listdir("data/data_faces_from_camera/"):
|
||||
# 获取已录入的最后一个人脸序号
|
||||
person_list = os.listdir("data/data_faces_from_camera/")
|
||||
person_list.sort()
|
||||
person_num_latest = int(str(person_list[-1]).split("_")[-1])
|
||||
person_cnt = person_num_latest
|
||||
self.ss_cnt = 0 # 将人脸计数器清零 / Clear the cnt of screen shots
|
||||
self.press_n_flag = 1 # 已经按下 'n' / Pressed 'n' already
|
||||
|
||||
# 如果第一次存储或者没有之前录入的人脸, 按照 person_1 开始录入
|
||||
else:
|
||||
person_cnt = 0
|
||||
# 5. 检测到人脸 / Face detected
|
||||
if len(faces) != 0:
|
||||
# 矩形框 / Show the ROI of faces
|
||||
for k, d in enumerate(faces):
|
||||
# 计算矩形框大小 / Compute the size of rectangle box
|
||||
height = (d.bottom() - d.top())
|
||||
width = (d.right() - d.left())
|
||||
hh = int(height/2)
|
||||
ww = int(width/2)
|
||||
|
||||
# 之后用来控制是否保存图像的 flag
|
||||
save_flag = 1
|
||||
|
||||
while cap.isOpened():
|
||||
# 480 height * 640 width
|
||||
flag, img_rd = cap.read()
|
||||
kk = cv2.waitKey(1)
|
||||
|
||||
img_gray = cv2.cvtColor(img_rd, cv2.COLOR_RGB2GRAY)
|
||||
|
||||
# 人脸数 faces
|
||||
faces = detector(img_gray, 0)
|
||||
|
||||
# 待会要写的字体
|
||||
font = cv2.FONT_HERSHEY_COMPLEX
|
||||
|
||||
# 按下 'n' 新建存储人脸的文件夹
|
||||
if kk == ord('n'):
|
||||
person_cnt += 1
|
||||
current_face_dir = path_photos_from_camera + "person_" + str(person_cnt)
|
||||
os.makedirs(current_face_dir)
|
||||
print('\n')
|
||||
print("新建的人脸文件夹: ", current_face_dir)
|
||||
|
||||
# 将人脸计数器清零
|
||||
cnt_ss = 0
|
||||
|
||||
# 检测到人脸
|
||||
if len(faces) != 0:
|
||||
# 矩形框
|
||||
for k, d in enumerate(faces):
|
||||
# 计算矩形大小
|
||||
# (x,y), (宽度width, 高度height)
|
||||
pos_start = tuple([d.left(), d.top()])
|
||||
pos_end = tuple([d.right(), d.bottom()])
|
||||
|
||||
# 计算矩形框大小
|
||||
height = (d.bottom() - d.top())
|
||||
width = (d.right() - d.left())
|
||||
|
||||
hh = int(height/2)
|
||||
ww = int(width/2)
|
||||
|
||||
# 设置颜色 / The color of rectangle of faces detected
|
||||
color_rectangle = (255, 255, 255)
|
||||
if (d.right()+ww) > 640 or (d.bottom()+hh > 480) or (d.left()-ww < 0) or (d.top()-hh < 0):
|
||||
cv2.putText(img_rd, "OUT OF RANGE", (20, 300), font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)
|
||||
color_rectangle = (0, 0, 255)
|
||||
save_flag = 0
|
||||
else:
|
||||
color_rectangle = (255, 255, 255)
|
||||
save_flag = 1
|
||||
|
||||
cv2.rectangle(img_rd,
|
||||
tuple([d.left() - ww, d.top() - hh]),
|
||||
tuple([d.right() + ww, d.bottom() + hh]),
|
||||
color_rectangle, 2)
|
||||
|
||||
# 根据人脸大小生成空的图像
|
||||
im_blank = np.zeros((int(height*2), width*2, 3), np.uint8)
|
||||
|
||||
if save_flag:
|
||||
# 按下 's' 保存摄像头中的人脸到本地
|
||||
if kk == ord('s'):
|
||||
if os.path.isdir(current_face_dir):
|
||||
cnt_ss += 1
|
||||
for ii in range(height*2):
|
||||
for jj in range(width*2):
|
||||
im_blank[ii][jj] = img_rd[d.top()-hh + ii][d.left()-ww + jj]
|
||||
cv2.imwrite(current_face_dir + "/img_face_" + str(cnt_ss) + ".jpg", im_blank)
|
||||
print("写入本地:", str(current_face_dir) + "/img_face_" + str(cnt_ss) + ".jpg")
|
||||
# 6. 判断人脸矩形框是否超出 480x640 / If the size of ROI > 480x640
|
||||
if (d.right()+ww) > 640 or (d.bottom()+hh > 480) or (d.left()-ww < 0) or (d.top()-hh < 0):
|
||||
cv2.putText(img_rd, "OUT OF RANGE", (20, 300), self.font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)
|
||||
color_rectangle = (0, 0, 255)
|
||||
save_flag = 0
|
||||
if kk == ord('s'):
|
||||
print("请调整位置 / Please adjust your position")
|
||||
else:
|
||||
print("请在按 'S' 之前先按 'N' 来建文件夹 / Please press 'N' before 'S'")
|
||||
color_rectangle = (255, 255, 255)
|
||||
save_flag = 1
|
||||
|
||||
# 显示人脸数
|
||||
cv2.putText(img_rd, "Faces: " + str(len(faces)), (20, 100), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
|
||||
cv2.rectangle(img_rd,
|
||||
tuple([d.left() - ww, d.top() - hh]),
|
||||
tuple([d.right() + ww, d.bottom() + hh]),
|
||||
color_rectangle, 2)
|
||||
|
||||
# 添加说明
|
||||
cv2.putText(img_rd, "Face Register", (20, 40), font, 1, (0, 0, 0), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "N: New face folder", (20, 350), font, 0.8, (0, 0, 0), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "S: Save current face", (20, 400), font, 0.8, (0, 0, 0), 1, cv2.LINE_AA)
|
||||
cv2.putText(img_rd, "Q: Quit", (20, 450), font, 0.8, (0, 0, 0), 1, cv2.LINE_AA)
|
||||
# 7. 根据人脸大小生成空的图像 / Create blank image according to the size of face detected
|
||||
img_blank = np.zeros((int(height*2), width*2, 3), np.uint8)
|
||||
|
||||
# 按下 'q' 键退出
|
||||
if kk == ord('q'):
|
||||
break
|
||||
if save_flag:
|
||||
# 8. 按下 's' 保存摄像头中的人脸到本地 / Press 's' to save faces into local images
|
||||
if kk == ord('s'):
|
||||
# 检查有没有先按'n'新建文件夹 / Check if you have pressed 'n'
|
||||
if self.press_n_flag:
|
||||
self.ss_cnt += 1
|
||||
for ii in range(height*2):
|
||||
for jj in range(width*2):
|
||||
img_blank[ii][jj] = img_rd[d.top()-hh + ii][d.left()-ww + jj]
|
||||
cv2.imwrite(current_face_dir + "/img_face_" + str(self.ss_cnt) + ".jpg", img_blank)
|
||||
print("写入本地 / Save into:", str(current_face_dir) + "/img_face_" + str(self.ss_cnt) + ".jpg")
|
||||
else:
|
||||
print("请先按 'N' 来建文件夹, 按 'S' / Please press 'N' and press 'S'")
|
||||
|
||||
# 窗口显示
|
||||
# cv2.namedWindow("camera", 0) # 如果需要摄像头窗口大小可调
|
||||
cv2.imshow("camera", img_rd)
|
||||
self.current_frame_faces_cnt = len(faces)
|
||||
|
||||
# 释放摄像头
|
||||
cap.release()
|
||||
# 9. 生成的窗口添加说明文字 / Add note on cv2 window
|
||||
self.draw_note(img_rd)
|
||||
|
||||
# 删除建立的窗口
|
||||
cv2.destroyAllWindows()
|
||||
# 10. 按下 'q' 键退出 / Press 'q' to exit
|
||||
if kk == ord('q'):
|
||||
break
|
||||
|
||||
# 11. Update FPS
|
||||
self.update_fps()
|
||||
|
||||
cv2.namedWindow("camera", 1)
|
||||
cv2.imshow("camera", img_rd)
|
||||
|
||||
def run(self):
|
||||
cap = cv2.VideoCapture(0)
|
||||
self.process(cap)
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
|
||||
def main():
|
||||
Face_Register_con = Face_Register()
|
||||
Face_Register_con.run()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
@ -1,137 +0,0 @@
|
||||
# 从人脸图像文件中提取人脸特征存入 CSV
|
||||
# Get features from images and save into features_all.csv
|
||||
|
||||
# Author: coneypo
|
||||
# Blog: http://www.cnblogs.com/AdaminXie
|
||||
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
|
||||
# Mail: coneypo@foxmail.com
|
||||
|
||||
# Created at 2018-05-11
|
||||
# Updated at 2019-02-25
|
||||
|
||||
# 增加录入多张人脸到 CSV 的功能
|
||||
|
||||
# return_128d_features() 获取某张图像的 128D 特征
|
||||
# write_into_csv() 获取某个路径下所有图像的特征,并写入 CSV
|
||||
# compute_the_mean() 从 CSV 中读取 128D 特征,并计算特征均值
|
||||
|
||||
import cv2
|
||||
import os
|
||||
import dlib
|
||||
from skimage import io
|
||||
import csv
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
# 要读取人脸图像文件的路径
|
||||
path_photos_from_camera = "data/data_faces_from_camera/"
|
||||
# 储存人脸特征 csv 的路径
|
||||
path_csv_from_photos = "data/data_csvs_from_camera/"
|
||||
|
||||
# Dlib 正向人脸检测器
|
||||
detector = dlib.get_frontal_face_detector()
|
||||
|
||||
# Dlib 人脸预测器
|
||||
predictor = dlib.shape_predictor("data/data_dlib/shape_predictor_5_face_landmarks.dat")
|
||||
|
||||
# Dlib 人脸识别模型
|
||||
# Face recognition model, the object maps human faces into 128D vectors
|
||||
facerec = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
|
||||
|
||||
|
||||
# 返回单张图像的 128D 特征
|
||||
def return_128d_features(path_img):
|
||||
img = io.imread(path_img)
|
||||
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
faces = detector(img_gray, 1)
|
||||
|
||||
print("检测到人脸的图像:", path_img, "\n")
|
||||
|
||||
# 因为有可能截下来的人脸再去检测,检测不出来人脸了
|
||||
# 所以要确保是 检测到人脸的人脸图像 拿去算特征
|
||||
if len(faces) != 0:
|
||||
shape = predictor(img_gray, faces[0])
|
||||
face_descriptor = facerec.compute_face_descriptor(img_gray, shape)
|
||||
else:
|
||||
face_descriptor = 0
|
||||
print("no face")
|
||||
|
||||
# print(face_descriptor)
|
||||
return face_descriptor
|
||||
|
||||
|
||||
# 将文件夹中照片特征提取出来, 写入 CSV
|
||||
# path_faces_personX: 图像文件夹的路径
|
||||
# path_csv_from_photos: 要生成的 CSV 路径
|
||||
|
||||
def write_into_csv(path_faces_personX, path_csv_from_photos):
|
||||
photos_list = os.listdir(path_faces_personX)
|
||||
with open(path_csv_from_photos, "w", newline="") as csvfile:
|
||||
writer = csv.writer(csvfile)
|
||||
if photos_list:
|
||||
for i in range(len(photos_list)):
|
||||
# 调用return_128d_features()得到128d特征
|
||||
print("正在读的人脸图像:", path_faces_personX + "/" + photos_list[i])
|
||||
features_128d = return_128d_features(path_faces_personX + "/" + photos_list[i])
|
||||
# print(features_128d)
|
||||
# 遇到没有检测出人脸的图片跳过
|
||||
if features_128d == 0:
|
||||
i += 1
|
||||
else:
|
||||
writer.writerow(features_128d)
|
||||
else:
|
||||
print("Warning: Empty photos in "+path_faces_personX+'/')
|
||||
writer.writerow("")
|
||||
|
||||
|
||||
# 读取某人所有的人脸图像的数据,写入 person_X.csv
|
||||
faces = os.listdir(path_photos_from_camera)
|
||||
faces.sort()
|
||||
for person in faces:
|
||||
print("##### " + person + " #####")
|
||||
print(path_csv_from_photos + person + ".csv")
|
||||
write_into_csv(path_photos_from_camera + person, path_csv_from_photos + person + ".csv")
|
||||
print('\n')
|
||||
|
||||
|
||||
# 从 CSV 中读取数据,计算 128D 特征的均值
|
||||
def compute_the_mean(path_csv_from_photos):
|
||||
column_names = []
|
||||
|
||||
# 128D 特征
|
||||
for feature_num in range(128):
|
||||
column_names.append("features_" + str(feature_num + 1))
|
||||
|
||||
# 利用 pandas 读取 csv
|
||||
rd = pd.read_csv(path_csv_from_photos, names=column_names)
|
||||
|
||||
if rd.size != 0:
|
||||
# 存放 128D 特征的均值
|
||||
feature_mean_list = []
|
||||
|
||||
for feature_num in range(128):
|
||||
tmp_arr = rd["features_" + str(feature_num + 1)]
|
||||
tmp_arr = np.array(tmp_arr)
|
||||
# 计算某一个特征的均值
|
||||
tmp_mean = np.mean(tmp_arr)
|
||||
feature_mean_list.append(tmp_mean)
|
||||
else:
|
||||
feature_mean_list = []
|
||||
return feature_mean_list
|
||||
|
||||
|
||||
# 存放所有特征均值的 CSV 的路径
|
||||
path_csv_from_photos_feature_all = "data/features_all.csv"
|
||||
|
||||
# 存放人脸特征的 CSV 的路径
|
||||
path_csv_from_photos = "data/data_csvs_from_camera/"
|
||||
|
||||
with open(path_csv_from_photos_feature_all, "w", newline="") as csvfile:
|
||||
writer = csv.writer(csvfile)
|
||||
csv_rd = os.listdir(path_csv_from_photos)
|
||||
csv_rd.sort()
|
||||
print("##### 得到的特征均值 / The generated average values of features stored in: #####")
|
||||
for i in range(len(csv_rd)):
|
||||
feature_mean_list = compute_the_mean(path_csv_from_photos + csv_rd[i])
|
||||
print(path_csv_from_photos + csv_rd[i])
|
||||
writer.writerow(feature_mean_list)
|
||||
36
how_to_use_camera.py
Normal file → Executable file
@ -1,6 +1,3 @@
|
||||
# OpenCv 调用摄像头
|
||||
# 默认调用笔记本摄像头
|
||||
|
||||
# Author: coneypo
|
||||
# Blog: http://www.cnblogs.com/AdaminXie
|
||||
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
|
||||
@ -12,7 +9,31 @@ cap = cv2.VideoCapture(0)
|
||||
|
||||
# cap.set(propId, value)
|
||||
# 设置视频参数: propId - 设置的视频参数, value - 设置的参数值
|
||||
cap.set(3, 480)
|
||||
"""
|
||||
0. cv2.CAP_PROP_POS_MSEC Current position of the video file in milliseconds.
|
||||
1. cv2.CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured next.
|
||||
2. cv2.CAP_PROP_POS_AVI_RATIO Relative position of the video file
|
||||
3. cv2.CAP_PROP_FRAME_WIDTH Width of the frames in the video stream.
|
||||
4. cv2.CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream.
|
||||
5. cv2.CAP_PROP_FPS Frame rate.
|
||||
6. cv2.CAP_PROP_FOURCC 4-character code of codec.
|
||||
7. cv2.CAP_PROP_FRAME_COUNT Number of frames in the video file.
|
||||
8. cv2.CAP_PROP_FORMAT Format of the Mat objects returned by retrieve() .
|
||||
9. cv2.CAP_PROP_MODE Backend-specific value indicating the current capture mode.
|
||||
10. cv2.CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras).
|
||||
11. cv2.CAP_PROP_CONTRAST Contrast of the image (only for cameras).
|
||||
12. cv2.CAP_PROP_SATURATION Saturation of the image (only for cameras).
|
||||
13. cv2.CAP_PROP_HUE Hue of the image (only for cameras).
|
||||
14. cv2.CAP_PROP_GAIN Gain of the image (only for cameras).
|
||||
15. cv2.CAP_PROP_EXPOSURE Exposure (only for cameras).
|
||||
16. cv2.CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should be converted to RGB.
|
||||
17. cv2.CAP_PROP_WHITE_BALANCE Currently unsupported
|
||||
18. cv2.CAP_PROP_RECTIFICATION Rectification flag for stereo cameras (note: only supported by DC1394 v 2.x backend currently)
|
||||
"""
|
||||
|
||||
# The default size of frame from camera will be 640x480 in Windows or Ubuntu
|
||||
# So we will not set "cap.set" here, it doesn't work
|
||||
# cap.set(propId=cv2.CAP_PROP_FRAME_WIDTH, value=cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
||||
|
||||
# cap.isOpened() 返回 true/false, 检查摄像头初始化是否成功
|
||||
print(cap.isOpened())
|
||||
@ -38,6 +59,11 @@ print(cap.isOpened())
|
||||
|
||||
while cap.isOpened():
|
||||
ret_flag, img_camera = cap.read()
|
||||
|
||||
print("height: ", img_camera.shape[0])
|
||||
print("width: ", img_camera.shape[1])
|
||||
print('\n')
|
||||
|
||||
cv2.imshow("camera", img_camera)
|
||||
|
||||
# 每帧数据延时 1ms, 延时为0, 读取的是静态帧
|
||||
@ -55,4 +81,4 @@ while cap.isOpened():
|
||||
cap.release()
|
||||
|
||||
# 删除建立的所有窗口
|
||||
cv2.destroyAllWindows()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
BIN
introduction/Dlib_Face_recognition_by_coneypo.pptx
Normal file → Executable file
BIN
introduction/face_descriptor_single_person.png
Normal file
|
After Width: | Height: | Size: 1.3 MiB |
|
Before Width: | Height: | Size: 853 KiB |
BIN
introduction/face_reco_multi.png
Normal file
|
After Width: | Height: | Size: 157 KiB |
BIN
introduction/face_reco_multi_ot.png
Normal file
|
After Width: | Height: | Size: 184 KiB |
BIN
introduction/face_reco_multi_people.png
Normal file
|
After Width: | Height: | Size: 1.5 MiB |
BIN
introduction/face_reco_single.png
Normal file
|
After Width: | Height: | Size: 358 KiB |
BIN
introduction/face_reco_single_ot.png
Normal file
|
After Width: | Height: | Size: 360 KiB |
|
Before Width: | Height: | Size: 357 KiB After Width: | Height: | Size: 1.1 MiB |
BIN
introduction/face_reco_single_person_with_name.png
Normal file
|
After Width: | Height: | Size: 1.3 MiB |
|
Before Width: | Height: | Size: 397 KiB |
BIN
introduction/face_reco_two_people_in_database.png
Normal file
|
After Width: | Height: | Size: 1.5 MiB |
BIN
introduction/face_reco_with_name.png
Normal file
|
After Width: | Height: | Size: 161 KiB |
BIN
introduction/face_register.png
Normal file
|
After Width: | Height: | Size: 345 KiB |
BIN
introduction/face_register_warning.png
Normal file
|
After Width: | Height: | Size: 332 KiB |
|
Before Width: | Height: | Size: 396 KiB After Width: | Height: | Size: 1.3 MiB |
BIN
introduction/get_face_from_camera_out_of_range.png
Normal file
|
After Width: | Height: | Size: 1.4 MiB |
BIN
introduction/overview.png
Executable file
|
After Width: | Height: | Size: 267 KiB |
BIN
introduction/overview_with_ot.png
Normal file
|
After Width: | Height: | Size: 74 KiB |
3
requirements.txt
Executable file
@ -0,0 +1,3 @@
|
||||
31231dlib==19.17.0
|
||||
numpy==1.15.1
|
||||
scikit-image==0.14.0
|
||||