8 Commits

Author SHA1 Message Date
93b8332555 face detect and classify from image 2020-10-16 11:04:20 +08:00
0f5adfd5cf remove unused statement 2020-09-16 10:40:31 +08:00
8a4fb563cd add MIT license 2020-09-15 17:09:18 +08:00
2c1b6416af use OT to improve FPS 2020-09-03 15:34:26 +08:00
65c9ec0caf test 2020-08-19 23:19:21 +08:00
3313d91414 push from gitlab test 2020-07-03 13:56:05 +08:00
2b88597aee push from gitlab 2020-07-03 13:26:50 +08:00
e2698f7ae8 test 2020-07-03 11:48:58 +08:00
19 changed files with 751 additions and 223 deletions

21
LICENSE Normal file
View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2020 coneypo
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@ -11,13 +11,13 @@ Detect and recognize single/multi-faces from camera;
#. 摄像头人脸录入 / Face register
.. image:: introduction/get_face_from_camera.png
.. image:: introduction/face_register.png
:align: center
请不要离摄像头过近,人脸超出摄像头范围时会有 "OUT OF RANGE" 提醒 /
Please do not be too close to the camera, or you can't save faces with "OUT OF RANGE" warning;
.. image:: introduction/get_face_from_camera_out_of_range.png
.. image:: introduction/face_register_warning.png
:align: center
#. 提取特征建立人脸数据库 / Generate database from images captured
@ -25,25 +25,29 @@ Detect and recognize single/multi-faces from camera;
当单张人脸 / When single-face:
.. image:: introduction/face_reco_single_person.png
.. image:: introduction/face_reco_single.png
:align: center
利用 OT 对于单张人脸追踪/ Use OT to track, which can improve FPS from 1.x to 20.x:
.. image:: introduction/face_reco_single_ot.png
:align: center
当多张人脸 / When multi-faces:
一张已录入人脸 + 未录入 unknown 人脸 / 1x known face + 2x unknown face:
.. image:: introduction/face_reco_multi.png
:align: center
利用 OT 来实现 / When multi-faces with OT:
.. image:: introduction/face_reco_multi_people.png
.. image:: introduction/face_reco_multi_ot.png
:align: center
同时识别多张已录入人脸 / Multi-faces recognition at the same time:
定制显示名字, 可以写中文 / Customize names:
.. image:: introduction/face_reco_two_people_in_database.png
.. image:: introduction/face_reco_with_name.png
:align: center
实时人脸特征描述子计算 / Real-time face descriptor computation:
.. image:: introduction/face_descriptor_single_person.png
:align: center
** 关于精度 / About accuracy:
@ -58,11 +62,18 @@ Detect and recognize single/multi-faces from camera;
Overview
********
此项目中人脸识别的实现流程 / The design of this repo:
此项目中人脸识别的实现流程 (no OT, 每一帧都进行检测+识别) / The design of this repo:
.. image:: introduction/overview.png
:align: center
实现流程(with OT, 初始帧进行检测+识别,后续帧检测+质心跟踪) / The design of this repo:
.. image:: introduction/overview_with_ot.png
:align: center
如果利用 OT 来跟踪,可以大大提高 FPS, 因为做识别时候需要提取特征描述子的耗时很多;
Steps
*****
@ -98,6 +109,12 @@ Steps
python3 face_reco_from_camera.py
#. 或者利用 OT 算法,调用摄像头进行实时人脸识别/ Real-time face recognition with OT
.. code-block:: bash
python3 face_reco_from_camera_ot_single_person.py
python3 face_reco_from_camera_ot_multi_people.py
About Source Code
*****************
@ -107,34 +124,27 @@ Repo 的 tree / 树状图:
::
.
├── get_faces_from_camera.py # Step1. Face register
├── features_extraction_to_csv.py # Step2. Feature extraction
├── face_reco_from_camera.py # Step3. Face recognizer
├── face_descriptor_from_camera.py # Face descriptor computation
├── how_to_use_camera.py # Use the default camera by opencv
├── get_faces_from_camera.py # Step 1. Face register
├── features_extraction_to_csv.py # Step 2. Feature extraction
├── face_reco_from_camera.py # Step 3. Face recognizer
├── face_reco_from_camera_ot_single_person.py # Step 3. Face recognizer with OT for single person
├── face_reco_from_camera_ot_multi_people.py # Step 3. Face recognizer with OT for multi people
├── face_descriptor_from_camera.py # Face descriptor computation
├── how_to_use_camera.py # Use the default camera by opencv
├── data
│   ├── data_dlib # Dlib's model
│   ├── data_dlib # Dlib's model
│   │   ├── dlib_face_recognition_resnet_model_v1.dat
│   │   └── shape_predictor_68_face_landmarks.dat
│   ├── data_faces_from_camera # Face images captured from camera (will generate after step 1)
│   ├── data_faces_from_camera # Face images captured from camera (will generate after step 1)
│   │   ├── person_1
│   │   │   ├── img_face_1.jpg
│   │   │   └── img_face_2.jpg
│   │   └── person_2
│   │   └── img_face_1.jpg
│   │   └── img_face_2.jpg
│   └── features_all.csv # CSV to save all the features of known faces (will generate after step 2)
├── introduction # Some files for readme.rst
│   ├── Dlib_Face_recognition_by_coneypo.pptx
│   ├── face_reco_single_person_customize_name.png
│   ├── face_reco_single_person.png
│   ├── face_reco_two_people_in_database.png
│   ├── face_reco_two_people.png
│   ├── get_face_from_camera_out_of_range.png
│   ├── get_face_from_camera.png
│   └── overview.png
│   └── features_all.csv # CSV to save all the features of known faces (will generate after step 2)
├── README.rst
└── requirements.txt # Some python packages needed
└── requirements.txt # Some python packages needed
用到的 Dlib 相关模型函数:
@ -196,6 +206,11 @@ Python 源码介绍如下:
* 将捕获到的人脸数据和之前存的人脸数据进行对比计算欧式距离, 由此判断是否是同一个人;
#. face_reco_from_camera_ot_single_person/multi_people.py:
区别于 face_reco_from_camera.py (对每一帧都进行检测+识别),只会对初始帧做检测+识别,对后续帧做检测+质心跟踪;
#. (optional) face_descriptor_from_camera.py
调用摄像头进行实时特征描述子计算; / Real-time face descriptor computation;
@ -213,17 +228,15 @@ Tips:
#. 人脸录入的时候先建文件夹再保存图片, 先 ``N````S`` / Press ``N`` before ``S``
#. 关于人脸识别卡顿 FPS 低问题, 不做 compare 的时候, 光跑 face_descriptor_from_camera.py 中 face_reco_model.compute_face_descriptor
在 CPU: i7-8700K FPS: 5~6, 所以主要提取特征时候耗资源
#. 关于人脸识别卡顿 FPS 低问题, 原因是特征描述子提取很费时间, 光跑 face_descriptor_from_camera.py 中 face_reco_model.compute_face_descriptor 在 CPU: i7-8700K 得到的最终 FPS: 5~6 (检测在 0.03s, 特征描述子提取在 0.158s, 和已知人脸进行遍历对比在 0.003s 左右), 所以主要提取特征时候耗资源, 可以用 OT 去做追踪,而不是对每一帧都做检测+识别
可以访问我的博客获取本项目的更详细介绍,如有问题可以邮件联系我 /
For more details, please refer to my blog (in chinese) or mail to me :
* Blog: https://www.cnblogs.com/AdaminXie/p/9010298.html
* 关于 OT 部分的更新在 Blog: https://www.cnblogs.com/AdaminXie/p/13566269.html
* Mail: coneypo@foxmail.com ( Dlib 相关 repo 问题请联系 @foxmail 而不是 @intel )
仅限于交流学习, 商业合作勿扰;
Thanks for your support.
Thanks for your support.

Binary file not shown.

After

Width:  |  Height:  |  Size: 88 KiB

View File

@ -1,58 +1,50 @@
# 摄像头实时人脸识别
# Real-time face recognition
# Copyright (C) 2020 coneypo
# SPDX-License-Identifier: MIT
# Author: coneypo
# Blog: http://www.cnblogs.com/AdaminXie
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
# Mail: coneypo@foxmail.com
# Created at 2018-05-11
# Updated at 2020-05-29
# 人脸识别 / Real-time face detection and recognition from images
import dlib # 人脸处理的库 Dlib
import numpy as np # 数据处理的库 Numpy
import cv2 # 图像处理的库 OpenCV
import pandas as pd # 数据处理的库 Pandas
import dlib
import numpy as np
import cv2
import pandas as pd
import os
import time
from PIL import Image, ImageDraw, ImageFont
# 1. Dlib 正向人脸检测器
# Dlib 正向人脸检测器 / Use frontal face detector of Dlib
detector = dlib.get_frontal_face_detector()
# 2. Dlib 人脸 landmark 特征点检测器
# Dlib 人脸 landmark 特征点检测器 / Get face landmarks
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
# 3. Dlib Resnet 人脸识别模型,提取 128D 的特征矢量
# Dlib Resnet 人脸识别模型,提取 128D 的特征矢量 / Use Dlib resnet50 model to get 128D face descriptor
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
class Face_Recognizer:
def __init__(self):
# 用来存放所有录入人脸特征的数组 / Save the features of faces in the database
self.features_known_list = []
self.feature_known_list = [] # 用来存放所有录入人脸特征的数组 / Save the features of faces in the database
self.name_known_list = [] # 存储录入人脸名字 / Save the name of faces in the database
# 存储录入人脸名字 / Save the name of faces known
self.name_known_cnt = 0
self.name_known_list = []
# 存储当前摄像头中捕获到的所有人脸的坐标名字 / Save the positions and names of current faces captured
self.pos_camera_list = []
self.name_camera_list = []
# 存储当前摄像头中捕获到的人脸数
self.faces_cnt = 0
# 存储当前摄像头中捕获到的人脸特征
self.features_camera_list = []
self.current_frame_face_cnt = 0 # 存储当前摄像头中捕获到的人脸数 / Counter for faces in current frame
self.current_frame_feature_list = [] # 存储当前摄像头中捕获到的人脸特征 / Features of faces in current frame
self.current_frame_name_position_list = [] # 存储当前摄像头中捕获到的所有人脸的名字坐标 / Positions of faces in current frame
self.current_frame_name_list = [] # 存储当前摄像头中捕获到的所有人脸的名字 / Names of faces in current frame
# Update FPS
self.fps = 0
self.frame_start_time = 0
# 从 "features_all.csv" 读取录入人脸特征
# 从 "features_all.csv" 读取录入人脸特征 / Get known faces from "features_all.csv"
def get_face_database(self):
if os.path.exists("data/features_all.csv"):
path_features_known_csv = "data/features_all.csv"
csv_rd = pd.read_csv(path_features_known_csv, header=None)
# 2. 读取已知人脸数据 / Print known faces
for i in range(csv_rd.shape[0]):
features_someone_arr = []
for j in range(0, 128):
@ -60,10 +52,9 @@ class Face_Recognizer:
features_someone_arr.append('0')
else:
features_someone_arr.append(csv_rd.iloc[i][j])
self.features_known_list.append(features_someone_arr)
self.feature_known_list.append(features_someone_arr)
self.name_known_list.append("Person_"+str(i+1))
self.name_known_cnt = len(self.name_known_list)
print("Faces in Database:", len(self.features_known_list))
print("Faces in Database:", len(self.feature_known_list))
return 1
else:
print('##### Warning #####', '\n')
@ -94,7 +85,7 @@ class Face_Recognizer:
cv2.putText(img_rd, "Face Recognizer", (20, 40), font, 1, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(2)), (20, 100), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Faces: " + str(self.faces_cnt), (20, 140), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Faces: " + str(self.current_frame_face_cnt), (20, 140), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Q: Quit", (20, 450), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
def draw_name(self, img_rd):
@ -102,120 +93,93 @@ class Face_Recognizer:
font = ImageFont.truetype("simsun.ttc", 30)
img = Image.fromarray(cv2.cvtColor(img_rd, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img)
for i in range(self.faces_cnt):
# cv2.putText(img_rd, self.name_camera_list[i], self.pos_camera_list[i], font, 0.8, (0, 255, 255), 1, cv2.LINE_AA)
draw.text(xy=self.pos_camera_list[i], text=self.name_camera_list[i], font=font)
for i in range(self.current_frame_face_cnt):
# cv2.putText(img_rd, self.current_frame_name_list[i], self.current_frame_name_position_list[i], font, 0.8, (0, 255, 255), 1, cv2.LINE_AA)
draw.text(xy=self.current_frame_name_position_list[i], text=self.current_frame_name_list[i], font=font)
img_with_name = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
return img_with_name
# 修改显示人名
def modify_name_camera_list(self):
# 修改显示人名 / Show names in chinese
def show_chinese_name(self):
# Default known name: person_1, person_2, person_3
self.name_known_list[0] ='张三'.encode('utf-8').decode()
self.name_known_list[1] ='李四'.encode('utf-8').decode()
if self.current_frame_face_cnt >= 1:
self.name_known_list[0] ='张三'.encode('utf-8').decode()
# self.name_known_list[1] ='李四'.encode('utf-8').decode()
# self.name_known_list[2] ='xx'.encode('utf-8').decode()
# self.name_known_list[3] ='xx'.encode('utf-8').decode()
# self.name_known_list[4] ='xx'.encode('utf-8').decode()
# 处理获取的视频流,进行人脸识别 / Input video stream and face reco process
def process(self, stream):
# 1. 读取存放所有人脸特征的 csv
# 处理获取的视频流,进行人脸识别 / Face detection and recognition from input video stream
def process(self):
# 1. 读取存放所有人脸特征的 csv / Get faces known from "features.all.csv"
if self.get_face_database():
while stream.isOpened():
flag, img_rd = stream.read()
faces = detector(img_rd, 0)
kk = cv2.waitKey(1)
# 按下 q 键退出 / Press 'q' to quit
if kk == ord('q'):
break
else:
self.draw_note(img_rd)
self.features_camera_list = []
self.faces_cnt = 0
self.pos_camera_list = []
self.name_camera_list = []
# 2. 检测到人脸 / when face detected
if len(faces) != 0:
# 3. 获取当前捕获到的图像的所有人脸的特征,存储到 self.features_camera_list
# 3. Get the features captured and save into self.features_camera_list
for i in range(len(faces)):
shape = predictor(img_rd, faces[i])
self.features_camera_list.append(face_reco_model.compute_face_descriptor(img_rd, shape))
print(">>> Frame start")
img_rd = cv2.imread("data/data_faces_for_test/test_faces_1.jpg")
faces = detector(img_rd, 1)
self.draw_note(img_rd)
# 4. 遍历捕获到的图像中所有的人脸 / Traversal all the faces in the database
for k in range(len(faces)):
print("##### camera person", k + 1, "#####")
# 让人名跟随在矩形框的下方
# 确定人名的位置坐标
# 先默认所有人不认识,是 unknown
# Set the default names of faces with "unknown"
self.name_camera_list.append("unknown")
# 2. 检测到人脸 / Face detected in current frame
if len(faces) != 0:
# 3. 获取当前捕获到的图像的所有人脸的特征 / Compute the face descriptors for faces in current frame
for i in range(len(faces)):
shape = predictor(img_rd, faces[i])
self.current_frame_feature_list.append(face_reco_model.compute_face_descriptor(img_rd, shape))
# 4. 遍历捕获到的图像中所有的人脸 / Traversal all the faces in the database
for k in range(len(faces)):
print(">>>>>> For face", k+1, " in camera")
# 先默认所有人不认识,是 unknown / Set the default names of faces with "unknown"
self.current_frame_name_list.append("unknown")
# 每个捕获人脸的名字坐标 / Positions of faces captured
self.pos_camera_list.append(tuple(
[faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)]))
# 每个捕获人脸的名字坐标 / Positions of faces captured
self.current_frame_name_position_list.append(tuple(
[faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)]))
# 5. 对于某张人脸,遍历所有存储的人脸特征
# For every faces detected, compare the faces in the database
e_distance_list = []
for i in range(len(self.features_known_list)):
# 如果 person_X 数据不为空
if str(self.features_known_list[i][0]) != '0.0':
print("with person", str(i + 1), "the e distance: ", end='')
e_distance_tmp = self.return_euclidean_distance(self.features_camera_list[k],
self.features_known_list[i])
print(e_distance_tmp)
e_distance_list.append(e_distance_tmp)
else:
# 空数据 person_X
e_distance_list.append(999999999)
# 6. 寻找出最小的欧式距离匹配 / Find the one with minimum e distance
similar_person_num = e_distance_list.index(min(e_distance_list))
print("Minimum e distance with person", self.name_known_list[similar_person_num])
# 5. 对于某张人脸,遍历所有存储的人脸特征
# For every faces detected, compare the faces in the database
current_frame_e_distance_list = []
for i in range(len(self.feature_known_list)):
# 如果 person_X 数据不为空
if str(self.feature_known_list[i][0]) != '0.0':
print(" >>> With person", str(i + 1), ", the e distance: ", end='')
e_distance_tmp = self.return_euclidean_distance(self.current_frame_feature_list[k],
self.feature_known_list[i])
print(e_distance_tmp)
current_frame_e_distance_list.append(e_distance_tmp)
else:
# 空数据 person_X
current_frame_e_distance_list.append(999999999)
# 6. 寻找出最小的欧式距离匹配 / Find the one with minimum e distance
similar_person_num = current_frame_e_distance_list.index(min(current_frame_e_distance_list))
print(" >>> Minimum e distance with ", self.name_known_list[similar_person_num], ": ", min(current_frame_e_distance_list))
if min(e_distance_list) < 0.4:
self.name_camera_list[k] = self.name_known_list[similar_person_num]
print("May be person " + str(self.name_known_list[similar_person_num]))
else:
print("Unknown person")
# 矩形框 / Draw rectangle
for kk, d in enumerate(faces):
# 绘制矩形框
cv2.rectangle(img_rd, tuple([d.left(), d.top()]), tuple([d.right(), d.bottom()]),
(0, 255, 255), 2)
print('\n')
self.faces_cnt = len(faces)
# 7. 在这里更改显示的人名 / Modify name if needed
self.modify_name_camera_list()
# 8. 写名字 / Draw name
# self.draw_name(img_rd)
img_with_name = self.draw_name(img_rd)
if min(current_frame_e_distance_list) < 0.4:
self.current_frame_name_list[k] = self.name_known_list[similar_person_num]
print(" >>> Face recognition result: " + str(self.name_known_list[similar_person_num]))
else:
img_with_name = img_rd
print(" >>> Face recognition result: Unknown person")
print("Faces in camera now:", self.name_camera_list, "\n")
# 矩形框 / Draw rectangle
for kk, d in enumerate(faces):
# 绘制矩形框
cv2.rectangle(img_rd, tuple([d.left(), d.top()]), tuple([d.right(), d.bottom()]),
(0, 255, 255), 2)
cv2.imshow("camera", img_with_name)
self.current_frame_face_cnt = len(faces)
# 9. 更新 FPS / Update stream FPS
self.update_fps()
img_rd = self.draw_name(img_rd)
# OpenCV 调用摄像头并进行 process
def run(self):
cap = cv2.VideoCapture(0)
cap.set(3, 480)
self.process(cap)
print(">>>>>> Faces in camera now:", self.current_frame_name_list)
cap.release()
cv2.destroyAllWindows()
cv2.imshow("camera", img_rd)
cv2.waitKey(0)
print(">>> Frame ends\n\n")
def main():
Face_Recognizer_con = Face_Recognizer()
Face_Recognizer_con.run()
Face_Recognizer_con.process()
if __name__ == '__main__':

View File

@ -0,0 +1,285 @@
# Copyright (C) 2020 coneypo
# SPDX-License-Identifier: MIT
# Author: coneypo
# Blog: http://www.cnblogs.com/AdaminXie
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
# Mail: coneypo@foxmail.com
# 利用 OT 人脸追踪, 实时人脸识别 / Real-time face detection and recognition via OT for single face
import dlib
import numpy as np
import cv2
import os
import pandas as pd
import time
# Dlib 正向人脸检测器 / Use frontal face detector of Dlib
detector = dlib.get_frontal_face_detector()
# Dlib 人脸 landmark 特征点检测器 / Get face landmarks
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
# Dlib Resnet 人脸识别模型,提取 128D 的特征矢量 / Use Dlib resnet50 model to get 128D face descriptor
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
class Face_Recognizer:
def __init__(self):
self.font = cv2.FONT_ITALIC
# For FPS
self.frame_time = 0
self.frame_start_time = 0
self.fps = 0
# cnt for frame
self.frame_cnt = 0
# 用来存放所有录入人脸特征的数组 / Save the features of faces in the database
self.features_known_list = []
# 存储录入人脸名字 / Save the name of faces in the database
self.name_known_list = []
# 用来存储上一帧和当前帧 ROI 的质心坐标 / List to save centroid positions of ROI in frame N-1 and N
self.last_frame_centroid_list = []
self.current_frame_centroid_list = []
# 用来存储上一帧和当前帧检测出目标的名字 / List to save names of objects in frame N-1 and N
self.last_frame_names_list = []
self.current_frame_face_name_list = []
# 上一帧和当前帧中人脸数的计数器 / cnt for faces in frame N-1 and N
self.last_frame_face_cnt = 0
self.current_frame_face_cnt = 0
# 用来存放进行识别时候对比的欧氏距离 / Save the e-distance for faceX when recognizing
self.current_frame_face_X_e_distance_list = []
# 存储当前摄像头中捕获到的所有人脸的坐标名字 / Save the positions and names of current faces captured
self.current_frame_face_position_list = []
# 存储当前摄像头中捕获到的人脸特征 / Save the features of people in current frame
self.current_frame_face_features_list = []
# e distance between centroid of ROI in last and current frame
self.last_current_frame_centroid_e_distance = 0
# 从 "features_all.csv" 读取录入人脸特征 / Get known faces from "features_all.csv"
def get_face_database(self):
if os.path.exists("data/features_all.csv"):
path_features_known_csv = "data/features_all.csv"
csv_rd = pd.read_csv(path_features_known_csv, header=None)
for i in range(csv_rd.shape[0]):
features_someone_arr = []
for j in range(0, 128):
if csv_rd.iloc[i][j] == '':
features_someone_arr.append('0')
else:
features_someone_arr.append(csv_rd.iloc[i][j])
self.features_known_list.append(features_someone_arr)
self.name_known_list.append("Person_" + str(i + 1))
print("Faces in Database:", len(self.features_known_list))
return 1
else:
print('##### Warning #####', '\n')
print("'features_all.csv' not found!")
print(
"Please run 'get_faces_from_camera.py' and 'features_extraction_to_csv.py' before 'face_reco_from_camera.py'",
'\n')
print('##### End Warning #####')
return 0
# 获取处理之后 stream 的帧数 / Get the fps of video stream
def update_fps(self):
now = time.time()
self.frame_time = now - self.frame_start_time
self.fps = 1.0 / self.frame_time
self.frame_start_time = now
# 计算两个128D向量间的欧式距离 / Compute the e-distance between two 128D features
@staticmethod
def return_euclidean_distance(feature_1, feature_2):
feature_1 = np.array(feature_1)
feature_2 = np.array(feature_2)
dist = np.sqrt(np.sum(np.square(feature_1 - feature_2)))
return dist
# / Use centroid tracker to link face_x in current frame with person_x in last frame
def centroid_tracker(self):
for i in range(len(self.current_frame_centroid_list)):
e_distance_current_frame_person_x_list = []
# For object 1 in current_frame, compute e-distance with object 1/2/3/4/... in last frame
for j in range(len(self.last_frame_centroid_list)):
self.last_current_frame_centroid_e_distance = self.return_euclidean_distance(
self.current_frame_centroid_list[i], self.last_frame_centroid_list[j])
e_distance_current_frame_person_x_list.append(
self.last_current_frame_centroid_e_distance)
last_frame_num = e_distance_current_frame_person_x_list.index(
min(e_distance_current_frame_person_x_list))
self.current_frame_face_name_list[i] = self.last_frame_face_name_list[last_frame_num]
# 生成的 cv2 window 上面添加说明文字 / putText on cv2 window
def draw_note(self, img_rd):
# 添加说明 / Add some statements
cv2.putText(img_rd, "Face recognizer with OT", (20, 40), self.font, 1, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(2)), (20, 100), self.font, 0.8, (0, 255, 0), 1,
cv2.LINE_AA)
cv2.putText(img_rd, "Faces: " + str(self.current_frame_face_cnt), (20, 130), self.font, 0.8, (0, 255, 0), 1,
cv2.LINE_AA)
cv2.putText(img_rd, "Q: Quit", (20, 450), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
for i in range(len(self.current_frame_face_name_list)):
cv2.putText(img_rd, "Face " + str(i + 1), tuple(
[int(self.current_frame_centroid_list[i][0]), int(self.current_frame_centroid_list[i][1])]), self.font,
0.8, (255, 190, 0),
1,
cv2.LINE_AA)
# 处理获取的视频流,进行人脸识别 / Face detection and recognition wit OT from input video stream
def process(self, stream):
# 1. 读取存放所有人脸特征的 csv / Get faces known from "features.all.csv"
if self.get_face_database():
while stream.isOpened():
self.frame_cnt += 1
print(">>> Frame " + str(self.frame_cnt) + " starts")
flag, img_rd = stream.read()
kk = cv2.waitKey(1)
# 2. 检测人脸 / Detect faces for frame X
faces = detector(img_rd, 0)
if self.current_frame_face_name_list == ['Person_2', 'Person_2']:
break
# Update cnt for faces in frames
self.last_frame_face_cnt = self.current_frame_face_cnt
self.current_frame_face_cnt = len(faces)
# Update the face name list in last frame
self.last_frame_face_name_list = self.current_frame_face_name_list[:]
# update frame centroid list
self.last_frame_centroid_list = self.current_frame_centroid_list
self.current_frame_centroid_list = []
print(" >>> current_frame_face_cnt: ", self.current_frame_face_cnt)
# 2.1. if cnt not changes
if self.current_frame_face_cnt == self.last_frame_face_cnt:
print(" >>> scene 1: 当前帧和上一帧相比没有发生人脸数变化 / no faces cnt changes in this frame!!!")
self.current_frame_face_position_list = []
if self.current_frame_face_cnt != 0:
# 2.1.1 Get ROI positions
for k, d in enumerate(faces):
self.current_frame_face_position_list.append(tuple(
[faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)]))
self.current_frame_centroid_list.append(
[int(faces[k].left() + faces[k].right()) / 2,
int(faces[k].top() + faces[k].bottom()) / 2])
# 计算矩形框大小 / Compute the size of rectangle box
height = (d.bottom() - d.top())
width = (d.right() - d.left())
hh = int(height / 2)
ww = int(width / 2)
cv2.rectangle(img_rd,
tuple([d.left() - ww, d.top() - hh]),
tuple([d.right() + ww, d.bottom() + hh]),
(255, 255, 255), 2)
# multi-faces in current frames, use centroid tracker to track
if self.current_frame_face_cnt != 1:
self.centroid_tracker()
for i in range(self.current_frame_face_cnt):
# 6.2 write names under ROI
cv2.putText(img_rd, self.current_frame_face_name_list[i],
self.current_frame_face_position_list[i], self.font, 0.8, (0, 255, 255), 1,
cv2.LINE_AA)
# 2.2 if cnt of faces changes, 0->1 or 1->0 or ...
else:
print(" >>> scene 2: 当前帧和上一帧相比人脸数发生变化 / Faces cnt changes in this frame")
self.current_frame_face_position_list = []
self.current_frame_face_X_e_distance_list = []
# 2.2.1 face cnt decrease: 1->0, 2->1, ...
if self.current_frame_face_cnt == 0:
print(" >>> scene 2.1 人脸消失, 当前帧中没有人脸 / No guy in this frame!!!")
# clear list of names and features
self.current_frame_face_name_list = []
self.current_frame_face_features_list = []
# 2.2.2 face cnt increase: 0->1, 0->2, ..., 1->2, ...
else:
print(" >>> scene 2.2 出现人脸,进行人脸识别 / Do face recognition for people detected in this frame")
self.current_frame_face_name_list = []
for i in range(len(faces)):
shape = predictor(img_rd, faces[i])
self.current_frame_face_features_list.append(
face_reco_model.compute_face_descriptor(img_rd, shape))
self.current_frame_face_name_list.append("unknown")
# 2.2.2.1 遍历捕获到的图像中所有的人脸 / Traversal all the faces in the database
for k in range(len(faces)):
print(" >>> For face " + str(k+1) + " in current frame:")
self.current_frame_centroid_list.append(
[int(faces[k].left() + faces[k].right()) / 2,
int(faces[k].top() + faces[k].bottom()) / 2])
self.current_frame_face_X_e_distance_list = []
# 2.2.2.2 每个捕获人脸的名字坐标 / Positions of faces captured
self.current_frame_face_position_list.append(tuple(
[faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)]))
# 2.2.2.3 对于某张人脸,遍历所有存储的人脸特征
# For every faces detected, compare the faces in the database
for i in range(len(self.features_known_list)):
# 如果 person_X 数据不为空
if str(self.features_known_list[i][0]) != '0.0':
print(" >>> with person", str(i + 1), "the e distance: ", end='')
e_distance_tmp = self.return_euclidean_distance(
self.current_frame_face_features_list[k],
self.features_known_list[i])
print(e_distance_tmp)
self.current_frame_face_X_e_distance_list.append(e_distance_tmp)
else:
# 空数据 person_X
self.current_frame_face_X_e_distance_list.append(999999999)
# 2.2.2.4 寻找出最小的欧式距离匹配 / Find the one with minimum e distance
similar_person_num = self.current_frame_face_X_e_distance_list.index(
min(self.current_frame_face_X_e_distance_list))
if min(self.current_frame_face_X_e_distance_list) < 0.4:
self.current_frame_face_name_list[k] = self.name_known_list[similar_person_num]
print(" >>> recognition result for face " + str(k+1) +": "+ self.name_known_list[similar_person_num])
else:
print(" >>> recognition result for face " + str(k + 1) + ": " + "unknown")
# 3. 生成的窗口添加说明文字 / Add note on cv2 window
self.draw_note(img_rd)
# 4. 按下 'q' 键退出 / Press 'q' to exit
if kk == ord('q'):
break
self.update_fps()
cv2.namedWindow("camera", 1)
cv2.imshow("camera", img_rd)
print(">>> Frame ends\n\n")
def run(self):
cap = cv2.VideoCapture(0)
self.process(cap)
cap.release()
cv2.destroyAllWindows()
def main():
Face_Recognizer_con = Face_Recognizer()
Face_Recognizer_con.run()
if __name__ == '__main__':
main()

View File

@ -0,0 +1,247 @@
# Copyright (C) 2020 coneypo
# SPDX-License-Identifier: MIT
# Author: coneypo
# Blog: http://www.cnblogs.com/AdaminXie
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
# Mail: coneypo@foxmail.com
# 利用 OT 对于单张人脸追踪, 实时人脸识别 / Real-time face detection and recognition via OT for single face
import dlib
import numpy as np
import cv2
import os
import pandas as pd
import time
# Dlib 正向人脸检测器 / Use frontal face detector of Dlib
detector = dlib.get_frontal_face_detector()
# Dlib 人脸 landmark 特征点检测器 / Get face landmarks
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
# Dlib Resnet 人脸识别模型,提取 128D 的特征矢量 / Use Dlib resnet50 model to get 128D face descriptor
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
class Face_Recognizer:
def __init__(self):
self.font = cv2.FONT_ITALIC
# For FPS
self.frame_time = 0
self.frame_start_time = 0
self.fps = 0
# cnt for frame
self.frame_cnt = 0
# 用来存储所有录入人脸特征的数组 / Save the features of faces in the database
self.features_known_list = []
# 用来存储录入人脸名字 / Save the name of faces in the database
self.name_known_list = []
# 用来存储上一帧和当前帧 ROI 的质心坐标 / List to save centroid positions of ROI in frame N-1 and N
self.last_frame_centroid_list = []
self.current_frame_centroid_list = []
# 用来存储上一帧和当前帧检测出目标的名字 / List to save names of objects in frame N-1 and N
self.last_frame_names_list = []
self.current_frame_face_names_list = []
# 上一帧和当前帧中人脸数的计数器 / cnt for faces in frame N-1 and N
self.last_frame_faces_cnt = 0
self.current_frame_face_cnt = 0
# 用来存放进行识别时候对比的欧氏距离 / Save the e-distance for faceX when recognizing
self.current_frame_face_X_e_distance_list = []
# 存储当前摄像头中捕获到的所有人脸的坐标名字 / Save the positions and names of current faces captured
self.current_frame_face_position_list = []
# 存储当前摄像头中捕获到的人脸特征 / Save the features of people in current frame
self.current_frame_face_features_list = []
# 从 "features_all.csv" 读取录入人脸特征 / Get known faces from "features_all.csv"
def get_face_database(self):
if os.path.exists("data/features_all.csv"):
path_features_known_csv = "data/features_all.csv"
csv_rd = pd.read_csv(path_features_known_csv, header=None)
for i in range(csv_rd.shape[0]):
features_someone_arr = []
for j in range(0, 128):
if csv_rd.iloc[i][j] == '':
features_someone_arr.append('0')
else:
features_someone_arr.append(csv_rd.iloc[i][j])
self.features_known_list.append(features_someone_arr)
self.name_known_list.append("Person_" + str(i + 1))
print("Faces in Database:", len(self.features_known_list))
return 1
else:
print('##### Warning #####', '\n')
print("'features_all.csv' not found!")
print(
"Please run 'get_faces_from_camera.py' and 'features_extraction_to_csv.py' before 'face_reco_from_camera.py'",
'\n')
print('##### End Warning #####')
return 0
# 计算两个128D向量间的欧式距离 / Compute the e-distance between two 128D features
# 更新 FPS / Update FPS of Video stream
def update_fps(self):
now = time.time()
self.frame_time = now - self.frame_start_time
self.fps = 1.0 / self.frame_time
self.frame_start_time = now
# 计算两个128D向量间的欧式距离 / Compute the e-distance between two 128D features
@staticmethod
def return_euclidean_distance(feature_1, feature_2):
feature_1 = np.array(feature_1)
feature_2 = np.array(feature_2)
dist = np.sqrt(np.sum(np.square(feature_1 - feature_2)))
return dist
# 生成的 cv2 window 上面添加说明文字 / putText on cv2 window
def draw_note(self, img_rd):
# 添加说明 / Add some statements
cv2.putText(img_rd, "Face Recognizer with OT (one person)", (20, 40), self.font, 1, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(2)), (20, 100), self.font, 0.8, (0, 255, 0), 1,
cv2.LINE_AA)
cv2.putText(img_rd, "Q: Quit", (20, 450), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
# 处理获取的视频流,进行人脸识别 / Face detection and recognition wit OT from input video stream
def process(self, stream):
# 1. 读取存放所有人脸特征的 csv / Get faces known from "features.all.csv"
if self.get_face_database():
while stream.isOpened():
self.frame_cnt += 1
print(">>> Frame " + str(self.frame_cnt) + " starts")
flag, img_rd = stream.read()
kk = cv2.waitKey(1)
# 2. 检测人脸 / Detect faces for frame X
faces = detector(img_rd, 0)
# Update cnt for faces in frames
self.last_frame_faces_cnt = self.current_frame_face_cnt
self.current_frame_face_cnt = len(faces)
print(" >>> current_frame_face_cnt: ", self.current_frame_face_cnt)
# 2.1 If cnt not changes, 1->1 or 0->0
if self.current_frame_face_cnt == self.last_frame_faces_cnt:
print(" >>> scene 1: 当前帧和上一帧相比没有发生人脸数变化 / no faces cnt changes in this frame!!!")
# One face in this frame
if self.current_frame_face_cnt != 0:
# 2.1.1 Get ROI positions
for k, d in enumerate(faces):
# 计算矩形框大小 / Compute the size of rectangle box
height = (d.bottom() - d.top())
width = (d.right() - d.left())
hh = int(height / 2)
ww = int(width / 2)
cv2.rectangle(img_rd,
tuple([d.left() - ww, d.top() - hh]),
tuple([d.right() + ww, d.bottom() + hh]),
(255, 255, 255), 2)
self.current_frame_face_position_list[k] = tuple(
[faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)])
print(" >>> self.current_frame_face_names_list[k]: ",
self.current_frame_face_names_list[k])
print(" >>> self.current_frame_face_position_list[k]: ",
self.current_frame_face_position_list[k])
# 2.1.2 写名字 / Write names under ROI
cv2.putText(img_rd, self.current_frame_face_names_list[k],
self.current_frame_face_position_list[k], self.font, 0.8, (0, 255, 255), 1,
cv2.LINE_AA)
# 2.2 if cnt of faces changes, 0->1 or 1->0
else:
print(" >>> scene 2: 当前帧和上一帧相比人脸数发生变化 / Faces cnt changes in this frame")
self.current_frame_face_position_list = []
self.current_frame_face_X_e_distance_list = []
# 2.2.1 face cnt: 1->0, no faces in this frame
if self.current_frame_face_cnt == 0:
print(" >>> scene 2.1 人脸消失, 当前帧中没有人脸 / no guy in this frame!!!")
# clear list of names and
self.current_frame_face_names_list = []
self.current_frame_face_features_list = []
# 2.2.2 face cnt: 0->1, get the new face
elif self.current_frame_face_cnt == 1:
print(" >>> scene 2.2 出现人脸,进行人脸识别 / Get person in this frame and do face recognition")
self.current_frame_face_names_list = []
for i in range(len(faces)):
shape = predictor(img_rd, faces[i])
self.current_frame_face_features_list.append(
face_reco_model.compute_face_descriptor(img_rd, shape))
# 2.2.2.1 遍历捕获到的图像中所有的人脸 / Traversal all the faces in the database
for k in range(len(faces)):
self.current_frame_face_names_list.append("unknown")
# 2.2.2.2 每个捕获人脸的名字坐标 / Positions of faces captured
self.current_frame_face_position_list.append(tuple(
[faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)]))
# 2.2.2.3 对于某张人脸,遍历所有存储的人脸特征
# For every faces detected, compare the faces in the database
for i in range(len(self.features_known_list)):
# 如果 person_X 数据不为空
if str(self.features_known_list[i][0]) != '0.0':
print(" >>> with person", str(i + 1), "the e distance: ", end='')
e_distance_tmp = self.return_euclidean_distance(
self.current_frame_face_features_list[k],
self.features_known_list[i])
print(e_distance_tmp)
self.current_frame_face_X_e_distance_list.append(e_distance_tmp)
else:
# 空数据 person_X
self.current_frame_face_X_e_distance_list.append(999999999)
# 2.2.2.4 寻找出最小的欧式距离匹配 / Find the one with minimum e distance
similar_person_num = self.current_frame_face_X_e_distance_list.index(min(self.current_frame_face_X_e_distance_list))
if min(self.current_frame_face_X_e_distance_list) < 0.4:
self.current_frame_face_names_list[k] = self.name_known_list[similar_person_num]
print(" >>> recognition result for face " + str(k + 1) + ": " +
self.name_known_list[similar_person_num])
else:
print(" >>> recognition result for face " + str(k + 1) + ": " + "unknown")
# 3. 生成的窗口添加说明文字 / Add note on cv2 window
self.draw_note(img_rd)
if kk == ord('q'):
break
self.update_fps()
cv2.namedWindow("camera", 1)
cv2.imshow("camera", img_rd)
print(">>> Frame ends\n\n")
def run(self):
cap = cv2.VideoCapture(0)
self.process(cap)
cap.release()
cv2.destroyAllWindows()
def main():
Face_Recognizer_con = Face_Recognizer()
Face_Recognizer_con.run()
if __name__ == '__main__':
main()

View File

@ -1,13 +1,12 @@
# 从人脸图像文件中提取人脸特征存入 CSV
# Features extraction from images and save into features_all.csv
# Copyright (C) 2020 coneypo
# SPDX-License-Identifier: MIT
# Author: coneypo
# Blog: http://www.cnblogs.com/AdaminXie
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
# Mail: coneypo@foxmail.com
# Created at 2018-05-11
# Updated at 2020-04-02
# 从人脸图像文件中提取人脸特征存入 "features_all.csv" / Extract features from images and save into "features_all.csv"
import os
import dlib
@ -15,49 +14,51 @@ from skimage import io
import csv
import numpy as np
# 要读取人脸图像文件的路径
# 要读取人脸图像文件的路径 / Path of cropped faces
path_images_from_camera = "data/data_faces_from_camera/"
# 1. Dlib 正向人脸检测器
# Dlib 正向人脸检测器 / Use frontal face detector of Dlib
detector = dlib.get_frontal_face_detector()
# 2. Dlib 人脸 landmark 特征点检测器
# Dlib 人脸 landmark 特征点检测器 / Get face landmarks
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
# 3. Dlib Resnet 人脸识别模型,提取 128D 的特征矢量
# Dlib Resnet 人脸识别模型,提取 128D 的特征矢量 / Use Dlib resnet50 model to get 128D face descriptor
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
# 返回单张图像的 128D 特征
# 返回单张图像的 128D 特征 / Return 128D features for single image
# Input: path_img <class 'str'>
# Output: face_descriptor <class 'dlib.vector'>
def return_128d_features(path_img):
img_rd = io.imread(path_img)
faces = detector(img_rd, 1)
print("%-40s %-20s" % ("检测到人脸的图像 / Image with faces detected:", path_img), '\n')
# 因为有可能截下来的人脸再去检测,检测不出来人脸了
# 所以要确保是 检测到人脸的人脸图像 拿去算特征
# 因为有可能截下来的人脸再去检测,检测不出来人脸了, 所以要确保是 检测到人脸的人脸图像拿去算特征
# For photos of faces saved, we need to make sure that we can detect faces from the cropped images
if len(faces) != 0:
shape = predictor(img_rd, faces[0])
face_descriptor = face_reco_model.compute_face_descriptor(img_rd, shape)
else:
face_descriptor = 0
print("no face")
return face_descriptor
# 将文件夹中照片特征提取出来, 写入 CSV
# 返回 personX 的 128D 特征均值 / Return the mean value of 128D face descriptor for person X
# Input: path_faces_personX <class 'str'>
# Output: features_mean_personX <class 'numpy.ndarray'>
def return_features_mean_personX(path_faces_personX):
features_list_personX = []
photos_list = os.listdir(path_faces_personX)
if photos_list:
for i in range(len(photos_list)):
# 调用return_128d_features()得到128d特征
print("%-40s %-20s" % ("正在读的人脸图像 / Image to read:", path_faces_personX + "/" + photos_list[i]))
# 调用 return_128d_features() 得到 128D 特征 / Get 128D features for single image of personX
print("%-40s %-20s" % ("正在读的人脸图像 / Reading image:", path_faces_personX + "/" + photos_list[i]))
features_128d = return_128d_features(path_faces_personX + "/" + photos_list[i])
# print(features_128d)
# 遇到没有检测出人脸的图片跳过
# 遇到没有检测出人脸的图片跳过 / Jump if no face detected from image
if features_128d == 0:
i += 1
else:
@ -65,17 +66,17 @@ def return_features_mean_personX(path_faces_personX):
else:
print("文件夹内图像文件为空 / Warning: No images in " + path_faces_personX + '/', '\n')
# 计算 128D 特征的均值
# 计算 128D 特征的均值 / Compute the mean
# personX 的 N 张图像 x 128D -> 1 x 128D
if features_list_personX:
features_mean_personX = np.array(features_list_personX).mean(axis=0)
else:
features_mean_personX = np.zeros(128, dtype=int, order='C')
print(type(features_mean_personX))
return features_mean_personX
# 获取已录入的最后一个人脸序号 / get the num of latest person
# 获取已录入的最后一个人脸序号 / Get the order of latest person
person_list = os.listdir("data/data_faces_from_camera/")
person_num_list = []
for person in person_list:
@ -91,4 +92,4 @@ with open("data/features_all.csv", "w", newline="") as csvfile:
writer.writerow(features_mean_personX)
print("特征均值 / The mean of features:", list(features_mean_personX))
print('\n')
print("所有录入人脸数据存入 / Save all the features of faces registered into: data/features_all.csv")
print("所有录入人脸数据存入 / Save all the features of faces registered into: data/features_all.csv")

View File

@ -1,22 +1,21 @@
# 进行人脸录入 / face register
# 录入多张人脸 / support multi-faces
# Copyright (C) 2020 coneypo
# SPDX-License-Identifier: MIT
# Author: coneypo
# Blog: http://www.cnblogs.com/AdaminXie
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
# Mail: coneypo@foxmail.com
# Created at 2018-05-11
# Updated at 2020-04-19
# 进行人脸录入 / Face register
import dlib # 人脸处理的库 Dlib
import numpy as np # 数据处理的库 Numpy
import cv2 # 图像处理的库 OpenCV
import os # 读写文件
import shutil # 读写文件
import dlib
import numpy as np
import cv2
import os
import shutil
import time
# Dlib 正向人脸检测器
# Dlib 正向人脸检测器 / Use frontal face detector of Dlib
detector = dlib.get_frontal_face_detector()
@ -25,22 +24,21 @@ class Face_Register:
self.path_photos_from_camera = "data/data_faces_from_camera/"
self.font = cv2.FONT_ITALIC
self.existing_faces_cnt = 0 # 已录入的人脸计数器
self.ss_cnt = 0 # 录入 personX 人脸时图片计数器
self.faces_cnt = 0 # 录入人脸计数器
self.existing_faces_cnt = 0 # 已录入的人脸计数器 / cnt for counting saved faces
self.ss_cnt = 0 # 录入 personX 人脸时图片计数器 / cnt for screen shots
self.current_frame_faces_cnt = 0 # 录入人脸计数器 / cnt for counting faces in current frame
# 之后用来控制是否保存图像的 flag / The flag to control if save
self.save_flag = 1
# 之后用来检查是否先按 'n' 再按 's' / The flag to check if press 'n' before 's'
self.press_n_flag = 0
self.save_flag = 1 # 之后用来控制是否保存图像的 flag / The flag to control if save
self.press_n_flag = 0 # 之后用来检查是否先按 'n' 再按 's' / The flag to check if press 'n' before 's'
# FPS
self.frame_time = 0
self.frame_start_time = 0
self.fps = 0
# 新建保存人脸图像文件和数据CSV文件夹 / Mkdir for saving photos and csv
# 新建保存人脸图像文件和数据CSV文件夹 / Make dir for saving photos and csv
def pre_work_mkdir(self):
# 新建文件夹 / make folders to save faces images and csv
# 新建文件夹 / Create folders to save faces images and csv
if os.path.isdir(self.path_photos_from_camera):
pass
else:
@ -55,47 +53,46 @@ class Face_Register:
if os.path.isfile("data/features_all.csv"):
os.remove("data/features_all.csv")
# 如果有之前录入的人脸, 在之前 person_x 的序号按照 person_x+1 开始录入 /
# If the old folders exists, start from person_x+1
# 如果有之前录入的人脸, 在之前 person_x 的序号按照 person_x+1 开始录入 / Start from person_x+1
def check_existing_faces_cnt(self):
if os.listdir("data/data_faces_from_camera/"):
# 获取已录入的最后一个人脸序号 / Get the num of latest person
# 获取已录入的最后一个人脸序号 / Get the order of latest person
person_list = os.listdir("data/data_faces_from_camera/")
person_num_list = []
for person in person_list:
person_num_list.append(int(person.split('_')[-1]))
self.existing_faces_cnt = max(person_num_list)
# 如果第一次存储或者没有之前录入的人脸, 按照 person_1 开始录入
# Start from person_1
# 如果第一次存储或者没有之前录入的人脸, 按照 person_1 开始录入 / Start from person_1
else:
self.existing_faces_cnt = 0
# 获取处理之后 stream 的帧数 / Get the fps of video stream
# 获取处理之后 stream 的帧数 / Update FPS of video stream
def update_fps(self):
now = time.time()
self.frame_time = now - self.frame_start_time
self.fps = 1.0 / self.frame_time
self.frame_start_time = now
# 生成的 cv2 window 上面添加说明文字 / putText on cv2 window
# 生成的 cv2 window 上面添加说明文字 / PutText on cv2 window
def draw_note(self, img_rd):
# 添加说明 / Add some statements
# 添加说明 / Add some notes
cv2.putText(img_rd, "Face Register", (20, 40), self.font, 1, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(2)), (20, 100), self.font, 0.8, (0, 255, 0), 1,
cv2.LINE_AA)
cv2.putText(img_rd, "Faces: " + str(self.faces_cnt), (20, 140), self.font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Faces: " + str(self.current_frame_faces_cnt), (20, 140), self.font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
cv2.putText(img_rd, "N: Create face folder", (20, 350), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "S: Save current face", (20, 400), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Q: Quit", (20, 450), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
# 获取人脸
# 获取人脸 / Main process of face detection and saving
def process(self, stream):
# 1. 新建储存人脸图像文件目录 / Uncomment if you need mkdir
# self.pre_work_mkdir()
# 1. 新建储存人脸图像文件目录 / Create folders to save photos
self.pre_work_mkdir()
# 2. 删除 "/data/data_faces_from_camera" 中已有人脸图像文件 / Uncomment if want to delete the old faces
self.pre_work_del_old_face_folders()
# 2. 删除 "/data/data_faces_from_camera" 中已有人脸图像文件 / Uncomment if want to delete the saved faces and start from person_1
if os.path.isdir(self.path_photos_from_camera):
self.pre_work_del_old_face_folders()
# 3. 检查 "/data/data_faces_from_camera" 中已有人脸文件
self.check_existing_faces_cnt()
@ -103,7 +100,7 @@ class Face_Register:
while stream.isOpened():
flag, img_rd = stream.read() # Get camera video stream
kk = cv2.waitKey(1)
faces = detector(img_rd, 0) # Use dlib face detector
faces = detector(img_rd, 0) # Use Dlib face detector
# 4. 按下 'n' 新建存储人脸的文件夹 / Press 'n' to create the folders for saving faces
if kk == ord('n'):
@ -113,12 +110,12 @@ class Face_Register:
print('\n')
print("新建的人脸文件夹 / Create folders: ", current_face_dir)
self.ss_cnt = 0 # 将人脸计数器清零 / clear the cnt of faces
self.press_n_flag = 1 # 已经按下 'n' / have pressed 'n'
self.ss_cnt = 0 # 将人脸计数器清零 / Clear the cnt of screen shots
self.press_n_flag = 1 # 已经按下 'n' / Pressed 'n' already
# 5. 检测到人脸 / Face detected
if len(faces) != 0:
# 矩形框 / Show the HOG of faces
# 矩形框 / Show the ROI of faces
for k, d in enumerate(faces):
# 计算矩形框大小 / Compute the size of rectangle box
height = (d.bottom() - d.top())
@ -126,7 +123,7 @@ class Face_Register:
hh = int(height/2)
ww = int(width/2)
# 6. 判断人脸矩形框是否超出 480x640
# 6. 判断人脸矩形框是否超出 480x640 / If the size of ROI > 480x640
if (d.right()+ww) > 640 or (d.bottom()+hh > 480) or (d.left()-ww < 0) or (d.top()-hh < 0):
cv2.putText(img_rd, "OUT OF RANGE", (20, 300), self.font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)
color_rectangle = (0, 0, 255)
@ -142,7 +139,7 @@ class Face_Register:
tuple([d.right() + ww, d.bottom() + hh]),
color_rectangle, 2)
# 7. 根据人脸大小生成空的图像 / Create blank image according to the shape of face detected
# 7. 根据人脸大小生成空的图像 / Create blank image according to the size of face detected
img_blank = np.zeros((int(height*2), width*2, 3), np.uint8)
if save_flag:
@ -158,7 +155,8 @@ class Face_Register:
print("写入本地 / Save into:", str(current_face_dir) + "/img_face_" + str(self.ss_cnt) + ".jpg")
else:
print("请先按 'N' 来建文件夹, 按 'S' / Please press 'N' and press 'S'")
self.faces_cnt = len(faces)
self.current_frame_faces_cnt = len(faces)
# 9. 生成的窗口添加说明文字 / Add note on cv2 window
self.draw_note(img_rd)
@ -167,7 +165,9 @@ class Face_Register:
if kk == ord('q'):
break
# 11. Update FPS
self.update_fps()
cv2.namedWindow("camera", 1)
cv2.imshow("camera", img_rd)

View File

@ -1,6 +1,3 @@
# OpenCV 调用摄像头
# 默认调用笔记本摄像头
# Author: coneypo
# Blog: http://www.cnblogs.com/AdaminXie
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
@ -34,7 +31,7 @@ cap = cv2.VideoCapture(0)
18. cv2.CAP_PROP_RECTIFICATION Rectification flag for stereo cameras (note: only supported by DC1394 v 2.x backend currently)
"""
# The default shape of camera will be 640x480 in Windows or Ubuntu
# The default size of frame from camera will be 640x480 in Windows or Ubuntu
# So we will not set "cap.set" here, it doesn't work
# cap.set(propId=cv2.CAP_PROP_FRAME_WIDTH, value=cap.get(cv2.CAP_PROP_FRAME_WIDTH))
@ -84,4 +81,4 @@ while cap.isOpened():
cap.release()
# 删除建立的所有窗口
cv2.destroyAllWindows()
cv2.destroyAllWindows()

Binary file not shown.

After

Width:  |  Height:  |  Size: 157 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 184 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 358 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 360 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 161 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 345 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 332 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 324 KiB

After

Width:  |  Height:  |  Size: 267 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 74 KiB

View File

@ -1,3 +1,3 @@
dlib==19.17.0
31231dlib==19.17.0
numpy==1.15.1
scikit-image==0.14.0