30 Commits

Author SHA1 Message Date
397a6925f7 【更新/修复】首次提交及修复保存的数据命名导致的最终人脸识别过程中闪退的现象 2025-10-22 17:26:41 +08:00
fb96e47429 Merge pull request #71 from coni233/master
修复了录入中文名的若干问题
2024-12-10 19:21:56 +08:00
8c855a79e3 Update features_extraction_to_csv.py
修正读取图片时中文路径的问题
2024-11-15 14:33:44 +08:00
fd6c4d9e20 Update get_faces_from_camera_tkinter.py
修复pillow库保存时色彩通道不对的问题
2024-11-15 14:28:25 +08:00
f01fefe64a Update features_extraction_to_csv.py
修正中文名会显示乱码的问题
2024-11-14 22:14:30 +08:00
edaedbe285 Update get_faces_from_camera_tkinter.py
修正了中文名字导致无法保存图像的问题,这个因为OpenCV默认不支持非ASCII字符路径,改为用Pillow保存图像
在Step:1中新增了“更改”和“删除”按钮,“更改”在输入已存在的名字时,点击保存会在已存在的名字目录下添加新照片“删除”在输入已存在的名字时会删除该名字的目录。
保存路径更改为”person_输入的人名“以适应更多情况
新增对没有摄像头的电脑检测和提示
修正因显示fps位数不同而原因导致的界面抖动
2024-11-14 22:13:38 +08:00
13ccabf616 Merge pull request #51 from coneypo/dependabot/pip/numpy-1.22.0
Bump numpy from 1.21.3 to 1.22.0
2022-08-19 12:26:53 +08:00
cd652f5bdd Bump numpy from 1.21.3 to 1.22.0
Bumps [numpy](https://github.com/numpy/numpy) from 1.21.3 to 1.22.0.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/HOWTO_RELEASE.rst)
- [Commits](https://github.com/numpy/numpy/compare/v1.21.3...v1.22.0)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2022-06-21 22:50:32 +00:00
1571d81764 Fix issue of videoCapture
Should be "cv2.VideoCapture(0)"
2022-01-07 11:34:44 +08:00
ed1e99b769 Update README.rst 2021-11-12 14:27:48 +08:00
636aa84aaf Update README.rst 2021-11-12 14:15:15 +08:00
b77a45ab97 Update README.rst 2021-11-12 14:13:40 +08:00
ab09b7ecbb Update README.rst 2021-11-12 14:13:02 +08:00
97b85ac107 Modify var name when tkinter GUI 2021-11-12 14:01:51 +08:00
932f8bcb9d [Bug fix] Extract failed when empty face folder 2021-11-11 13:25:51 +08:00
9bde8b4985 1. New GUI for face register with Tkinter, support set name when saving
faces;
2. `features_all.csv` modified to n x 129, 129D will be person_name + 128D features;

Signed-off-by: Zhengtian Xie <coneypo@gmail.com>
2021-11-09 15:55:27 +08:00
7dc1071df4 1. Update requirements.txt
2. Update the fps refresh period to 1s
2021-10-28 08:51:42 +08:00
8e8a0032c4 Update repo structure
1. Add performance counter for `face_descriptor_from_camera.py`
2. Rename `face_reco_from_camera_ot_single_person.py` to `face_reco_from_camera_single_face.py`, remove OT in it
3. Update readme
2021-08-16 10:25:30 +08:00
93bb154c8a Remove '.idea/' generated by pycharm
Signed-off-by: coneypo <coneypo@gmail.com>
2021-06-04 14:03:25 +08:00
05b78489a7 1. Using logging to set log level
2. Fix bug in OT with multi-people
3. Set 'reclassify_interval' to do re-classify for OT with multi-people

Signed-off-by: coneypo <coneypo@gmail.com>
2021-06-04 13:51:46 +08:00
8eaad06adc show chinese name in OT script 2021-01-25 11:25:40 +08:00
4e4553d5e9 Show chinese name with OT 2021-01-14 14:58:31 +08:00
e9008e3ad3 Add 're-classification feature for single-person' 2020-12-14 11:50:06 +08:00
0f5adfd5cf remove unused statement 2020-09-16 10:40:31 +08:00
8a4fb563cd add MIT license 2020-09-15 17:09:18 +08:00
2c1b6416af use OT to improve FPS 2020-09-03 15:34:26 +08:00
65c9ec0caf test 2020-08-19 23:19:21 +08:00
3313d91414 push from gitlab test 2020-07-03 13:56:05 +08:00
2b88597aee push from gitlab 2020-07-03 13:26:50 +08:00
e2698f7ae8 test 2020-07-03 11:48:58 +08:00
47 changed files with 1251 additions and 1404 deletions

5
.idea/.gitignore generated vendored Normal file
View File

@ -0,0 +1,5 @@
# 默认忽略的文件
/shelf/
/workspace.xml
# 基于编辑器的 HTTP 客户端请求
/httpRequests/

View File

@ -2,13 +2,9 @@
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$">
<sourceFolder url="file://$MODULE_DIR$/data" isTestSource="false" />
<excludeFolder url="file://$MODULE_DIR$/.venv" />
</content>
<orderEntry type="jdk" jdkName="Python 3.7 (2)" jdkType="Python SDK" />
<orderEntry type="jdk" jdkName="Python 3.10 (Dlib_face_recognition_from_camera) (2)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
<component name="TestRunnerService">
<option name="projectConfiguration" value="pytest" />
<option name="PROJECT_TEST_RUNNER" value="py.test" />
</component>
</module>

4
.idea/encodings.xml generated
View File

@ -1,4 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Encoding" addBOMForNewFiles="with NO BOM" />
</project>

View File

@ -1,20 +0,0 @@
<component name="InspectionProjectProfileManager">
<profile version="1.0">
<option name="myName" value="Project Default" />
<inspection_tool class="PyPep8Inspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
<option name="ignoredErrors">
<list>
<option value="E501" />
</list>
</option>
</inspection_tool>
<inspection_tool class="PyPep8NamingInspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
<option name="ignoredErrors">
<list>
<option value="N806" />
<option value="N802" />
</list>
</option>
</inspection_tool>
</profile>
</component>

View File

@ -0,0 +1,6 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

5
.idea/misc.xml generated
View File

@ -1,4 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.7 (2)" project-jdk-type="Python SDK" />
<component name="Black">
<option name="sdkName" value="Python 3.10 (Dlib_face_recognition_from_camera) (2)" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.10 (Dlib_face_recognition_from_camera) (2)" project-jdk-type="Python SDK" />
</project>

1
.idea/vcs.xml generated
View File

@ -1,6 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="" vcs="Git" />
<mapping directory="$PROJECT_DIR$" vcs="Git" />
</component>
</project>

246
.idea/workspace.xml generated
View File

@ -1,246 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ChangeListManager">
<list default="true" id="e58b655a-3a9b-4001-b4da-39e07ab46629" name="Default Changelist" comment="">
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
<change beforePath="$PROJECT_DIR$/features_extraction_to_mysql.py" beforeDir="false" afterPath="$PROJECT_DIR$/features_extraction_to_mysql.py" afterDir="false" />
</list>
<option name="EXCLUDED_CONVERTED_TO_IGNORED" value="true" />
<option name="SHOW_DIALOG" value="false" />
<option name="HIGHLIGHT_CONFLICTS" value="true" />
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
<option name="LAST_RESOLUTION" value="IGNORE" />
</component>
<component name="FileTemplateManagerImpl">
<option name="RECENT_TEMPLATES">
<list>
<option value="Python Script" />
</list>
</option>
</component>
<component name="Git.Settings">
<option name="RECENT_GIT_ROOT_PATH" value="$PROJECT_DIR$" />
</component>
<component name="ProjectId" id="1Tq7xXTTl7R3HeMqxP7UMMKZMeC" />
<component name="ProjectLevelVcsManager" settingsEditedManually="true" />
<component name="ProjectViewState">
<option name="hideEmptyMiddlePackages" value="true" />
<option name="showExcludedFiles" value="true" />
<option name="showLibraryContents" value="true" />
</component>
<component name="PropertiesComponent">
<property name="SHARE_PROJECT_CONFIGURATION_FILES" value="true" />
<property name="last_opened_file_path" value="$PROJECT_DIR$/../Django_MySQL_Table" />
<property name="settings.editor.selected.configurable" value="com.jetbrains.python.configuration.PyActiveSdkModuleConfigurable" />
</component>
<component name="RunDashboard">
<option name="ruleStates">
<list>
<RuleState>
<option name="name" value="ConfigurationTypeDashboardGroupingRule" />
</RuleState>
<RuleState>
<option name="name" value="StatusDashboardGroupingRule" />
</RuleState>
</list>
</option>
</component>
<component name="RunManager" selected="Python.features_extraction_to_mysql">
<configuration name="face_reco_from_camera_mysql" type="PythonConfigurationType" factoryName="Python" temporary="true">
<module name="Dlib_face_recognition_from_camera" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/face_reco_from_camera_mysql.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<configuration name="features_extraction_to_mysql" type="PythonConfigurationType" factoryName="Python" temporary="true">
<module name="Dlib_face_recognition_from_camera" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/features_extraction_to_mysql.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<configuration name="get_faces_from_camera" type="PythonConfigurationType" factoryName="Python" temporary="true">
<module name="Dlib_face_recognition_from_camera" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/get_faces_from_camera.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<configuration name="mysql_insert" type="PythonConfigurationType" factoryName="Python" temporary="true">
<module name="Dlib_face_recognition_from_camera" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/mysql_insert.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<configuration name="read_mysql" type="PythonConfigurationType" factoryName="Python" temporary="true">
<module name="Dlib_face_recognition_from_camera" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/read_mysql.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<list>
<item itemvalue="Python.mysql_insert" />
<item itemvalue="Python.features_extraction_to_mysql" />
<item itemvalue="Python.face_reco_from_camera_mysql" />
<item itemvalue="Python.read_mysql" />
<item itemvalue="Python.get_faces_from_camera" />
</list>
<recent_temporary>
<list>
<item itemvalue="Python.features_extraction_to_mysql" />
<item itemvalue="Python.read_mysql" />
<item itemvalue="Python.face_reco_from_camera_mysql" />
<item itemvalue="Python.get_faces_from_camera" />
<item itemvalue="Python.mysql_insert" />
</list>
</recent_temporary>
</component>
<component name="SvnConfiguration">
<configuration />
</component>
<component name="TaskManager">
<task active="true" id="Default" summary="Default task">
<changelist id="e58b655a-3a9b-4001-b4da-39e07ab46629" name="Default Changelist" comment="" />
<created>1538622047029</created>
<option name="number" value="Default" />
<option name="presentableId" value="Default" />
<updated>1538622047029</updated>
</task>
<servers />
</component>
<component name="Vcs.Log.Tabs.Properties">
<option name="TAB_STATES">
<map>
<entry key="MAIN">
<value>
<State>
<option name="COLUMN_ORDER" />
</State>
</value>
</entry>
</map>
</option>
</component>
<component name="WindowStateProjectService">
<state width="1897" height="194" key="GridCell.Tab.0.bottom" timestamp="1587297625581">
<screen x="0" y="27" width="1920" height="993" />
</state>
<state width="1897" height="194" key="GridCell.Tab.0.bottom/0.27.1920.993@0.27.1920.993" timestamp="1587297625581" />
<state width="1897" height="194" key="GridCell.Tab.0.center" timestamp="1587297625579">
<screen x="0" y="27" width="1920" height="993" />
</state>
<state width="1897" height="194" key="GridCell.Tab.0.center/0.27.1920.993@0.27.1920.993" timestamp="1587297625579" />
<state width="1897" height="194" key="GridCell.Tab.0.left" timestamp="1587297625578">
<screen x="0" y="27" width="1920" height="993" />
</state>
<state width="1897" height="194" key="GridCell.Tab.0.left/0.27.1920.993@0.27.1920.993" timestamp="1587297625578" />
<state width="1897" height="194" key="GridCell.Tab.0.right" timestamp="1587297625580">
<screen x="0" y="27" width="1920" height="993" />
</state>
<state width="1897" height="194" key="GridCell.Tab.0.right/0.27.1920.993@0.27.1920.993" timestamp="1587297625580" />
<state width="1485" height="299" key="GridCell.Tab.1.bottom" timestamp="1587263908422">
<screen x="0" y="27" width="1920" height="993" />
</state>
<state width="1485" height="299" key="GridCell.Tab.1.bottom/0.27.1920.993@0.27.1920.993" timestamp="1587263908422" />
<state width="1485" height="299" key="GridCell.Tab.1.center" timestamp="1587263908422">
<screen x="0" y="27" width="1920" height="993" />
</state>
<state width="1485" height="299" key="GridCell.Tab.1.center/0.27.1920.993@0.27.1920.993" timestamp="1587263908422" />
<state width="1485" height="299" key="GridCell.Tab.1.left" timestamp="1587263908422">
<screen x="0" y="27" width="1920" height="993" />
</state>
<state width="1485" height="299" key="GridCell.Tab.1.left/0.27.1920.993@0.27.1920.993" timestamp="1587263908422" />
<state width="1485" height="299" key="GridCell.Tab.1.right" timestamp="1587263908422">
<screen x="0" y="27" width="1920" height="993" />
</state>
<state width="1485" height="299" key="GridCell.Tab.1.right/0.27.1920.993@0.27.1920.993" timestamp="1587263908422" />
<state x="759" y="251" width="672" height="678" key="search.everywhere.popup" timestamp="1587264669499">
<screen x="0" y="27" width="1920" height="993" />
</state>
<state x="759" y="251" width="672" height="678" key="search.everywhere.popup/0.27.1920.993@0.27.1920.993" timestamp="1587264669499" />
</component>
<component name="XDebuggerManager">
<breakpoint-manager>
<default-breakpoints>
<breakpoint type="python-exception">
<properties notifyOnTerminate="true" exception="BaseException">
<option name="notifyOnTerminate" value="true" />
</properties>
</breakpoint>
</default-breakpoints>
</breakpoint-manager>
</component>
</project>

21
LICENSE Normal file
View File

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2018-2021 coneypo
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

0
README.md Normal file
View File

View File

@ -1,229 +0,0 @@
Face recognition from camera with Dlib
######################################
Introduction
************
Detect and recognize single/multi-faces from camera;
调用摄像头进行人脸识别,支持多张人脸同时识别;
#. 摄像头人脸录入 / Face register
.. image:: introduction/get_face_from_camera.png
:align: center
请不要离摄像头过近,人脸超出摄像头范围时会有 "OUT OF RANGE" 提醒 /
Please do not be too close to the camera, or you can't save faces with "OUT OF RANGE" warning;
.. image:: introduction/get_face_from_camera_out_of_range.png
:align: center
#. 提取特征建立人脸数据库 / Generate database from images captured
#. 利用摄像头进行人脸识别 / Face recognizer
当单张人脸 / When single-face:
.. image:: introduction/face_reco_single_person.png
:align: center
当多张人脸 / When multi-faces:
一张已录入人脸 + 未录入 unknown 人脸 / 1x known face + 2x unknown face:
.. image:: introduction/face_reco_multi_people.png
:align: center
同时识别多张已录入人脸 / Multi-faces recognition at the same time:
.. image:: introduction/face_reco_two_people_in_database.png
:align: center
实时人脸特征描述子计算 / Real-time face descriptor computation:
.. image:: introduction/face_descriptor_single_person.png
:align: center
** 关于精度 / About accuracy:
* When using a distance threshold of ``0.6``, the dlib model obtains an accuracy of ``99.38%`` on the standard LFW face recognition benchmark.
** 关于算法 / About algorithm
* 基于 Residual Neural Network / 残差网络的 CNN 模型;
* This model is a ResNet network with 29 conv layers. It's essentially a version of the ResNet-34 network from the paper Deep Residual Learning for Image Recognition by He, Zhang, Ren, and Sun with a few layers removed and the number of filters per layer reduced by half.
Overview
********
此项目中人脸识别的实现流程 / The design of this repo:
.. image:: introduction/overview.png
:align: center
Steps
*****
#. 安装依赖库 / Install some python packages if needed
.. code-block:: bash
pip3 install opencv-python
pip3 install scikit-image
pip3 install dlib
#. 下载源码 / Download zip from website or via GitHub Desktop in windows, or git clone repo in Ubuntu
.. code-block:: bash
git clone https://github.com/coneypo/Dlib_face_recognition_from_camera
#. 进行人脸信息采集录入 / Register faces
.. code-block:: bash
python3 get_face_from_camera.py
#. 提取所有录入人脸数据存入 "features_all.csv" / Features extraction and save into "features_all.csv"
.. code-block:: bash
python3 features_extraction_to_csv.py
#. 调用摄像头进行实时人脸识别 / Real-time face recognition
.. code-block:: bash
python3 face_reco_from_camera.py
About Source Code
*****************
Repo 的 tree / 树状图:
::
.
├── get_faces_from_camera.py # Step1. Face register
├── features_extraction_to_csv.py # Step2. Feature extraction
├── face_reco_from_camera.py # Step3. Face recognizer
├── face_descriptor_from_camera.py # Face descriptor computation
├── how_to_use_camera.py # Use the default camera by opencv
├── data
│   ├── data_dlib # Dlib's model
│   │   ├── dlib_face_recognition_resnet_model_v1.dat
│   │   └── shape_predictor_68_face_landmarks.dat
│   ├── data_faces_from_camera # Face images captured from camera (will generate after step 1)
│   │   ├── person_1
│   │   │   ├── img_face_1.jpg
│   │   │   └── img_face_2.jpg
│   │   └── person_2
│   │   └── img_face_1.jpg
│   │   └── img_face_2.jpg
│   └── features_all.csv # CSV to save all the features of known faces (will generate after step 2)
├── introduction # Some files for readme.rst
│   ├── Dlib_Face_recognition_by_coneypo.pptx
│   ├── face_reco_single_person_customize_name.png
│   ├── face_reco_single_person.png
│   ├── face_reco_two_people_in_database.png
│   ├── face_reco_two_people.png
│   ├── get_face_from_camera_out_of_range.png
│   ├── get_face_from_camera.png
│   └── overview.png
├── README.rst
└── requirements.txt # Some python packages needed
用到的 Dlib 相关模型函数:
#. Dlib 正向人脸检测器 (based on HOG), output: <class 'dlib.dlib.rectangles'>
.. code-block:: python
detector = dlib.get_frontal_face_detector()
faces = detector(img_gray, 0)
#. Dlib 人脸 landmark 特征点检测器, output: <class 'dlib.dlib.full_object_detection'>,
will use shape_predictor_68_face_landmarks.dat
.. code-block:: python
# This is trained on the ibug 300-W dataset (https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/)
# Also note that this model file is designed for use with dlib's HOG face detector.
# That is, it expects the bounding boxes from the face detector to be aligned a certain way, the way dlib's HOG face detector does it.
# It won't work as well when used with a face detector that produces differently aligned boxes,
# such as the CNN based mmod_human_face_detector.dat face detector.
predictor = dlib.shape_predictor("data/data_dlib/shape_predictor_68_face_landmarks.dat")
shape = predictor(img_rd, faces[i])
#. Dlib 特征描述子 Face recognition model, the object maps human faces into 128D vectors
.. code-block:: python
face_rec = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
Python 源码介绍如下:
#. get_face_from_camera.py:
进行 Face register / 人脸信息采集录入
* 请注意存储人脸图片时,矩形框不要超出摄像头范围,要不然无法保存到本地;
* 超出会有 "out of range" 的提醒;
#. features_extraction_to_csv.py:
从上一步存下来的图像文件中,提取人脸数据存入CSV;
* 会生成一个存储所有特征人脸数据的 "features_all.csv";
* size: n*128 , n means n people you registered and 128 means 128D features of the face
#. face_reco_from_camera.py:
这一步将调用摄像头进行实时人脸识别; / This part will implement real-time face recognition;
* Compare the faces captured from camera with the faces you have registered which are saved in "features_all.csv"
* 将捕获到的人脸数据和之前存的人脸数据进行对比计算欧式距离, 由此判断是否是同一个人;
#. (optional) face_descriptor_from_camera.py
调用摄像头进行实时特征描述子计算; / Real-time face descriptor computation;
More
****
Tips:
#. 如果希望详细了解 dlib 的用法,请参考 Dlib 官方 Python api 的网站 / You can refer to this link for more information of how to use dlib: http://dlib.net/python/index.html
#. Windows下建议不要把代码放到 ``C:\``, 可能会出现权限读取问题 / In windows, we will not recommend that running this repo in dir ``C:\``
#. 代码最好不要有中文路径 / No chinese characters in your code directory
#. 人脸录入的时候先建文件夹再保存图片, 先 ``N````S`` / Press ``N`` before ``S``
#. 关于人脸识别卡顿 FPS 低问题, 不做 compare 的时候, 光跑 face_descriptor_from_camera.py 中 face_reco_model.compute_face_descriptor
在 CPU: i7-8700K FPS: 5~6, 所以主要提取特征时候耗资源
可以访问我的博客获取本项目的更详细介绍,如有问题可以邮件联系我 /
For more details, please refer to my blog (in chinese) or mail to me :
* Blog: https://www.cnblogs.com/AdaminXie/p/9010298.html
* Mail: coneypo@foxmail.com ( Dlib 相关 repo 问题请联系 @foxmail 而不是 @intel )
仅限于交流学习, 商业合作勿扰;
Thanks for your support.

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.8 KiB

1
data/features_all.csv Normal file
View File

@ -0,0 +1 @@
马斌昊,-0.0899050161242485,0.02384429331868887,0.10691650211811066,-0.026448555290699005,-0.12473130598664284,-0.026039691641926765,-0.10633478686213493,-0.10004803165793419,0.0756474919617176,-0.09969355911016464,0.2548818141222,-0.02838892675936222,-0.18727628886699677,-0.04292612988501787,-0.038223471492528915,0.14358164370059967,-0.13197344541549683,-0.08303523808717728,-0.04544464126229286,0.005225636065006256,0.05400150641798973,0.016614584252238274,0.04487479291856289,0.0208868607878685,-0.12604008615016937,-0.3497048169374466,-0.1073501706123352,-0.08952881768345833,-0.058808863162994385,-0.007420409703627229,-0.07389594614505768,0.027185998857021332,-0.14693009108304977,0.032583920285105705,0.002864556387066841,0.08570835366845131,-0.030903122387826443,-0.09934812411665916,0.13845199346542358,-0.052308812737464905,-0.2402488812804222,0.03694266080856323,0.07542015612125397,0.1459449827671051,0.2269286960363388,0.014682859182357788,0.05472549982368946,-0.11605571955442429,0.06804285570979118,-0.17394205182790756,0.028083041310310364,0.10427030548453331,0.05113978683948517,0.05636468715965748,0.0043844198808074,-0.14433760941028595,-0.00407144520431757,0.12244492024183273,-0.09491624310612679,-0.015221940353512764,0.024541491642594337,-0.07212522253394127,-0.001256248913705349,-0.08840961009263992,0.22439686954021454,0.11492674425244331,-0.15236739814281464,-0.1425611972808838,0.06785859912633896,-0.18730811774730682,-0.07806657627224922,0.07729200273752213,-0.1676863580942154,-0.21197973936796188,-0.32569898664951324,0.027618836611509323,0.39188095927238464,0.10446011275053024,-0.17949597537517548,0.014993381686508656,-0.06068217195570469,0.00010182708501815796,0.09084133803844452,0.1250796541571617,-0.021716125309467316,0.008610536344349384,-0.11595302447676659,-0.0045088487677276134,0.27449268102645874,-0.07868175581097603,-0.0018516536802053452,0.2252117618918419,-0.00012384727597236633,0.06658063270151615,0.010239068418741226,0.06843071430921555,-0.024587254971265793,0.015095856040716171,-0.10306384414434433,0.04500553756952286,-0.013208229094743729,-0.07549317926168442,-0.024796511977910995,0.06462816521525383,-0.1793217957019806,0.07073099911212921,-0.008851969614624977,-0.003468985203653574,0.019725533202290535,-0.03128764219582081,-0.11080201715230942,-0.05722355656325817,0.15097910165786743,-0.24694078415632248,0.1483754888176918,0.183498315513134,0.1129513792693615,0.17476002871990204,0.13292384147644043,0.095770925283432,-0.055514756590127945,-0.03940589725971222,-0.17228589206933975,0.006599367829039693,0.07312680780887604,-0.0077499039471149445,0.07860656827688217,0.03986034169793129
1 马斌昊 -0.0899050161242485 0.02384429331868887 0.10691650211811066 -0.026448555290699005 -0.12473130598664284 -0.026039691641926765 -0.10633478686213493 -0.10004803165793419 0.0756474919617176 -0.09969355911016464 0.2548818141222 -0.02838892675936222 -0.18727628886699677 -0.04292612988501787 -0.038223471492528915 0.14358164370059967 -0.13197344541549683 -0.08303523808717728 -0.04544464126229286 0.005225636065006256 0.05400150641798973 0.016614584252238274 0.04487479291856289 0.0208868607878685 -0.12604008615016937 -0.3497048169374466 -0.1073501706123352 -0.08952881768345833 -0.058808863162994385 -0.007420409703627229 -0.07389594614505768 0.027185998857021332 -0.14693009108304977 0.032583920285105705 0.002864556387066841 0.08570835366845131 -0.030903122387826443 -0.09934812411665916 0.13845199346542358 -0.052308812737464905 -0.2402488812804222 0.03694266080856323 0.07542015612125397 0.1459449827671051 0.2269286960363388 0.014682859182357788 0.05472549982368946 -0.11605571955442429 0.06804285570979118 -0.17394205182790756 0.028083041310310364 0.10427030548453331 0.05113978683948517 0.05636468715965748 0.0043844198808074 -0.14433760941028595 -0.00407144520431757 0.12244492024183273 -0.09491624310612679 -0.015221940353512764 0.024541491642594337 -0.07212522253394127 -0.001256248913705349 -0.08840961009263992 0.22439686954021454 0.11492674425244331 -0.15236739814281464 -0.1425611972808838 0.06785859912633896 -0.18730811774730682 -0.07806657627224922 0.07729200273752213 -0.1676863580942154 -0.21197973936796188 -0.32569898664951324 0.027618836611509323 0.39188095927238464 0.10446011275053024 -0.17949597537517548 0.014993381686508656 -0.06068217195570469 0.00010182708501815796 0.09084133803844452 0.1250796541571617 -0.021716125309467316 0.008610536344349384 -0.11595302447676659 -0.0045088487677276134 0.27449268102645874 -0.07868175581097603 -0.0018516536802053452 0.2252117618918419 -0.00012384727597236633 0.06658063270151615 0.010239068418741226 0.06843071430921555 -0.024587254971265793 0.015095856040716171 -0.10306384414434433 0.04500553756952286 -0.013208229094743729 -0.07549317926168442 -0.024796511977910995 0.06462816521525383 -0.1793217957019806 0.07073099911212921 -0.008851969614624977 -0.003468985203653574 0.019725533202290535 -0.03128764219582081 -0.11080201715230942 -0.05722355656325817 0.15097910165786743 -0.24694078415632248 0.1483754888176918 0.183498315513134 0.1129513792693615 0.17476002871990204 0.13292384147644043 0.095770925283432 -0.055514756590127945 -0.03940589725971222 -0.17228589206933975 0.006599367829039693 0.07312680780887604 -0.0077499039471149445 0.07860656827688217 0.03986034169793129

View File

@ -1,75 +0,0 @@
# 摄像头实时人脸特征描述子计算 / Real-time face descriptor compute
import dlib # 人脸识别的库 Dlib
import cv2 # 图像处理的库 OpenCV
import time
# 1. Dlib 正向人脸检测器
detector = dlib.get_frontal_face_detector()
# 2. Dlib 人脸 landmark 特征点检测器
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
# 3. Dlib Resnet 人脸识别模型,提取 128D 的特征矢量
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
class Face_Descriptor:
def __init__(self):
self.frame_time = 0
self.frame_start_time = 0
self.fps = 0
def update_fps(self):
now = time.time()
self.frame_time = now - self.frame_start_time
self.fps = 1.0 / self.frame_time
self.frame_start_time = now
def run(self):
cap = cv2.VideoCapture(0)
cap.set(3, 480)
self.process(cap)
cap.release()
cv2.destroyAllWindows()
def process(self, stream):
while stream.isOpened():
flag, img_rd = stream.read()
k = cv2.waitKey(1)
faces = detector(img_rd, 0)
font = cv2.FONT_HERSHEY_SIMPLEX
# 检测到人脸
if len(faces) != 0:
for face in faces:
face_shape = predictor(img_rd, face)
face_desc = face_reco_model.compute_face_descriptor(img_rd, face_shape)
# 添加说明
cv2.putText(img_rd, "Face Descriptor", (20, 40), font, 1, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(2)), (20, 100), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Faces: " + str(len(faces)), (20, 140), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
cv2.putText(img_rd, "S: Save current face", (20, 400), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Q: Quit", (20, 450), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
# 按下 'q' 键退出
if k == ord('q'):
break
self.update_fps()
cv2.namedWindow("camera", 1)
cv2.imshow("camera", img_rd)
def main():
Face_Descriptor_con = Face_Descriptor()
Face_Descriptor_con.run()
if __name__ == '__main__':
main()

View File

@ -1,80 +1,70 @@
# 摄像头实时人脸识别
# Real-time face recognition
# Copyright (C) 2018-2021 coneypo
# SPDX-License-Identifier: MIT
# Author: coneypo
# Blog: http://www.cnblogs.com/AdaminXie
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
# Created at 2018-05-11
# Updated at 2020-05-29
import dlib # 人脸处理的库 Dlib
import numpy as np # 数据处理的库 Numpy
import cv2 # 图像处理的库 OpenCV
import pandas as pd # 数据处理的库 Pandas
import dlib
import numpy as np
import cv2
import pandas as pd
import os
import time
import logging
from PIL import Image, ImageDraw, ImageFont
# 1. Dlib 正向人脸检测器
# Dlib 正向人脸检测器
detector = dlib.get_frontal_face_detector()
# 2. Dlib 人脸 landmark 特征点检测器
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
# 3. Dlib Resnet 人脸识别模型,提取 128D 的特征矢量
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
class Face_Recognizer:
def __init__(self):
# 用来存放所有录入人脸特征的数组 / Save the features of faces in the database
self.features_known_list = []
self.face_feature_known_list = []
self.face_name_known_list = []
# 存储录入人脸名字 / Save the name of faces known
self.name_known_cnt = 0
self.name_known_list = []
# 存储当前摄像头中捕获到的所有人脸的坐标名字 / Save the positions and names of current faces captured
self.pos_camera_list = []
self.name_camera_list = []
# 存储当前摄像头中捕获到的人脸数
self.faces_cnt = 0
# 存储当前摄像头中捕获到的人脸特征
self.features_camera_list = []
self.current_frame_face_cnt = 0
self.current_frame_face_feature_list = []
self.current_frame_face_name_list = []
self.current_frame_face_name_position_list = []
# Update FPS
self.fps = 0
self.fps_show = 0
self.frame_start_time = 0
self.frame_cnt = 0
self.start_time = time.time()
self.font = cv2.FONT_ITALIC
# 安全加载中文字体
try:
self.font_chinese = ImageFont.truetype("simsun.ttc", 30)
except:
print("警告: 无法加载中文字体,使用默认字体")
self.font_chinese = ImageFont.load_default()
# 添加退出标志
self.exit_flag = False
# 从 "features_all.csv" 读取录入人脸特征
def get_face_database(self):
if os.path.exists("data/features_all.csv"):
path_features_known_csv = "data/features_all.csv"
csv_rd = pd.read_csv(path_features_known_csv, header=None)
# 2. 读取已知人脸数据 / Print known faces
for i in range(csv_rd.shape[0]):
features_someone_arr = []
for j in range(0, 128):
# 修复:确保姓名为字符串
name = str(csv_rd.iloc[i][0])
self.face_name_known_list.append(name)
for j in range(1, 129):
if csv_rd.iloc[i][j] == '':
features_someone_arr.append('0')
else:
features_someone_arr.append(csv_rd.iloc[i][j])
self.features_known_list.append(features_someone_arr)
self.name_known_list.append("Person_"+str(i+1))
self.name_known_cnt = len(self.name_known_list)
print("Faces in Database:", len(self.features_known_list))
self.face_feature_known_list.append(features_someone_arr)
logging.info("Faces in Database:%d", len(self.face_feature_known_list))
return 1
else:
print('##### Warning #####', '\n')
print("'features_all.csv' not found!")
print(
"Please run 'get_faces_from_camera.py' and 'features_extraction_to_csv.py' before 'face_reco_from_camera.py'",
'\n')
print('##### End Warning #####')
logging.warning("'features_all.csv' not found!")
return 0
# 计算两个128D向量间的欧式距离 / Compute the e-distance between two 128D features
@staticmethod
def return_euclidean_distance(feature_1, feature_2):
feature_1 = np.array(feature_1)
@ -82,138 +72,192 @@ class Face_Recognizer:
dist = np.sqrt(np.sum(np.square(feature_1 - feature_2)))
return dist
# 更新 FPS / Update FPS of Video stream
def update_fps(self):
now = time.time()
if str(self.start_time).split(".")[0] != str(now).split(".")[0]:
self.fps_show = self.fps
self.start_time = now
self.frame_time = now - self.frame_start_time
self.fps = 1.0 / self.frame_time
self.frame_start_time = now
def draw_note(self, img_rd):
font = cv2.FONT_ITALIC
cv2.putText(img_rd, "Face Recognizer", (20, 40), font, 1, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(2)), (20, 100), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Faces: " + str(self.faces_cnt), (20, 140), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Q: Quit", (20, 450), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Face Recognizer", (20, 40), self.font, 1, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Frame: " + str(self.frame_cnt), (20, 100), self.font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
cv2.putText(img_rd, "FPS: " + str(self.fps_show.__round__(2)), (20, 130), self.font, 0.8, (0, 255, 0), 1,
cv2.LINE_AA)
cv2.putText(img_rd, "Faces: " + str(self.current_frame_face_cnt), (20, 160), self.font, 0.8, (0, 255, 0), 1,
cv2.LINE_AA)
cv2.putText(img_rd, "Q: Quit", (20, 450), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
def draw_name(self, img_rd):
# 在人脸框下面写人脸名字 / Write names under rectangle
font = ImageFont.truetype("simsun.ttc", 30)
# 在人脸框下面写人脸名字
img = Image.fromarray(cv2.cvtColor(img_rd, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img)
for i in range(self.faces_cnt):
# cv2.putText(img_rd, self.name_camera_list[i], self.pos_camera_list[i], font, 0.8, (0, 255, 255), 1, cv2.LINE_AA)
draw.text(xy=self.pos_camera_list[i], text=self.name_camera_list[i], font=font)
img_with_name = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
return img_with_name
for i in range(self.current_frame_face_cnt):
try:
# 安全处理姓名
name = str(self.current_frame_face_name_list[i])
position = tuple(map(int, self.current_frame_face_name_position_list[i]))
draw.text(xy=position, text=name, font=self.font_chinese, fill=(255, 255, 0))
except Exception as e:
print(f"绘制姓名时出错: {e}")
continue
img_rd = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
return img_rd
# 修改显示人名
def modify_name_camera_list(self):
# Default known name: person_1, person_2, person_3
self.name_known_list[0] ='张三'.encode('utf-8').decode()
self.name_known_list[1] ='李四'.encode('utf-8').decode()
# self.name_known_list[2] ='xx'.encode('utf-8').decode()
# self.name_known_list[3] ='xx'.encode('utf-8').decode()
# self.name_known_list[4] ='xx'.encode('utf-8').decode()
def check_window_closed(self, window_name="camera"):
"""检查窗口是否被关闭"""
try:
# 尝试获取窗口属性,如果窗口关闭会返回 -1
if cv2.getWindowProperty(window_name, cv2.WND_PROP_VISIBLE) < 1:
return True
return False
except:
# 如果窗口不存在,也会触发异常
return True
# 处理获取的视频流,进行人脸识别 / Input video stream and face reco process
def process(self, stream):
# 1. 读取存放所有人脸特征的 csv
if self.get_face_database():
while stream.isOpened():
flag, img_rd = stream.read()
faces = detector(img_rd, 0)
kk = cv2.waitKey(1)
# 按下 q 键退出 / Press 'q' to quit
if kk == ord('q'):
break
else:
self.draw_note(img_rd)
self.features_camera_list = []
self.faces_cnt = 0
self.pos_camera_list = []
self.name_camera_list = []
if not self.get_face_database():
print("错误: 无法加载人脸数据库")
return
# 2. 检测到人脸 / when face detected
if len(faces) != 0:
# 3. 获取当前捕获到的图像的所有人脸的特征,存储到 self.features_camera_list
# 3. Get the features captured and save into self.features_camera_list
for i in range(len(faces)):
shape = predictor(img_rd, faces[i])
self.features_camera_list.append(face_reco_model.compute_face_descriptor(img_rd, shape))
print("人脸识别系统启动成功!")
print("'Q' 键退出程序")
print("或点击窗口关闭按钮退出")
# 4. 遍历捕获到的图像中所有的人脸 / Traversal all the faces in the database
for k in range(len(faces)):
print("##### camera person", k + 1, "#####")
# 让人名跟随在矩形框的下方
# 确定人名的位置坐标
# 先默认所有人不认识,是 unknown
# Set the default names of faces with "unknown"
self.name_camera_list.append("unknown")
# 创建窗口并设置为正常模式
cv2.namedWindow("camera", cv2.WINDOW_NORMAL)
# 每个捕获人脸的名字坐标 / Positions of faces captured
self.pos_camera_list.append(tuple(
[faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)]))
while stream.isOpened() and not self.exit_flag:
# 检查窗口是否被关闭
if self.check_window_closed():
print("检测到窗口关闭,退出程序")
break
# 5. 对于某张人脸,遍历所有存储的人脸特征
# For every faces detected, compare the faces in the database
e_distance_list = []
for i in range(len(self.features_known_list)):
# 如果 person_X 数据不为空
if str(self.features_known_list[i][0]) != '0.0':
print("with person", str(i + 1), "the e distance: ", end='')
e_distance_tmp = self.return_euclidean_distance(self.features_camera_list[k],
self.features_known_list[i])
print(e_distance_tmp)
e_distance_list.append(e_distance_tmp)
else:
# 空数据 person_X
e_distance_list.append(999999999)
# 6. 寻找出最小的欧式距离匹配 / Find the one with minimum e distance
similar_person_num = e_distance_list.index(min(e_distance_list))
print("Minimum e distance with person", self.name_known_list[similar_person_num])
self.frame_cnt += 1
flag, img_rd = stream.read()
if min(e_distance_list) < 0.4:
self.name_camera_list[k] = self.name_known_list[similar_person_num]
print("May be person " + str(self.name_known_list[similar_person_num]))
else:
print("Unknown person")
if not flag:
print("无法读取视频帧")
break
# 矩形框 / Draw rectangle
for kk, d in enumerate(faces):
# 绘制矩形框
cv2.rectangle(img_rd, tuple([d.left(), d.top()]), tuple([d.right(), d.bottom()]),
(0, 255, 255), 2)
print('\n')
# 检测按键和窗口关闭
kk = cv2.waitKey(1) & 0xFF
self.faces_cnt = len(faces)
# 7. 在这里更改显示的人名 / Modify name if needed
self.modify_name_camera_list()
# 8. 写名字 / Draw name
# self.draw_name(img_rd)
img_with_name = self.draw_name(img_rd)
else:
img_with_name = img_rd
# 按下 q 键退出
if kk == ord('q') or kk == ord('Q'):
print("接收到退出信号,退出程序")
break
print("Faces in camera now:", self.name_camera_list, "\n")
# 检查窗口关闭
if cv2.getWindowProperty("camera", cv2.WND_PROP_VISIBLE) < 1:
print("窗口已关闭,退出程序")
break
cv2.imshow("camera", img_with_name)
self.draw_note(img_rd)
self.current_frame_face_feature_list = []
self.current_frame_face_cnt = 0
self.current_frame_face_name_position_list = []
self.current_frame_face_name_list = []
# 9. 更新 FPS / Update stream FPS
self.update_fps()
# 2. 检测到人脸
faces = detector(img_rd, 0)
if len(faces) != 0:
# 3. 获取当前捕获到的图像的所有人脸的特征
for i in range(len(faces)):
shape = predictor(img_rd, faces[i])
self.current_frame_face_feature_list.append(face_reco_model.compute_face_descriptor(img_rd, shape))
# 4. 遍历捕获到的图像中所有的人脸
for k in range(len(faces)):
# 先默认所有人不认识
self.current_frame_face_name_list.append("unknown")
# 每个捕获人脸的名字坐标
self.current_frame_face_name_position_list.append(tuple(
[faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)]))
# 5. 对于某张人脸,遍历所有存储的人脸特征
current_frame_e_distance_list = []
for i in range(len(self.face_feature_known_list)):
if str(self.face_feature_known_list[i][0]) != '0.0':
e_distance_tmp = self.return_euclidean_distance(
self.current_frame_face_feature_list[k],
self.face_feature_known_list[i]
)
current_frame_e_distance_list.append(e_distance_tmp)
else:
current_frame_e_distance_list.append(999999999)
# 6. 寻找出最小的欧式距离匹配
if current_frame_e_distance_list:
similar_person_num = current_frame_e_distance_list.index(min(current_frame_e_distance_list))
min_distance = min(current_frame_e_distance_list)
if min_distance < 0.4:
self.current_frame_face_name_list[k] = self.face_name_known_list[similar_person_num]
# 绘制矩形框
cv2.rectangle(img_rd,
(faces[k].left(), faces[k].top()),
(faces[k].right(), faces[k].bottom()),
(255, 255, 255), 2)
self.current_frame_face_cnt = len(faces)
# 8. 写名字
img_rd = self.draw_name(img_rd)
# 显示图像
cv2.imshow("camera", img_rd)
# 9. 更新 FPS
self.update_fps()
# 清理资源
cv2.destroyAllWindows()
print("程序正常退出")
# OpenCV 调用摄像头并进行 process
def run(self):
cap = cv2.VideoCapture(0)
cap.set(3, 480)
self.process(cap)
if not cap.isOpened():
print("错误: 无法打开摄像头")
return
cap.release()
cv2.destroyAllWindows()
# 设置摄像头参数
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
try:
self.process(cap)
except KeyboardInterrupt:
print("\n接收到 Ctrl+C,退出程序")
except Exception as e:
print(f"程序异常: {e}")
finally:
# 确保资源被释放
cap.release()
cv2.destroyAllWindows()
def main():
logging.basicConfig(level=logging.INFO)
print("=== 人脸识别系统启动 ===")
# 检查必要的文件
required_files = [
'data/data_dlib/shape_predictor_68_face_landmarks.dat',
'data/data_dlib/dlib_face_recognition_resnet_model_v1.dat',
'data/features_all.csv'
]
for file in required_files:
if not os.path.exists(file):
print(f"错误: 缺少必要文件 {file}")
return
Face_Recognizer_con = Face_Recognizer()
Face_Recognizer_con.run()

View File

@ -1,221 +0,0 @@
# 摄像头实时人脸识别
# Real-time face recognition
# Author: coneypo
# Blog: http://www.cnblogs.com/AdaminXie
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
# Created at 2018-05-11
# Updated at 2020-05-29
import dlib # 人脸处理的库 Dlib
import numpy as np # 数据处理的库 Numpy
import cv2 # 图像处理的库 OpenCV
import pandas as pd # 数据处理的库 Pandas
import os
import time
from PIL import Image, ImageDraw, ImageFont
import pymysql
db = pymysql.connect("localhost", "root", "intel@123", "dlib_database")
cursor = db.cursor()
# 1. Dlib 正向人脸检测器
detector = dlib.get_frontal_face_detector()
# 2. Dlib 人脸 landmark 特征点检测器
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
# 3. Dlib Resnet 人脸识别模型,提取 128D 的特征矢量
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
class Face_Recognizer:
def __init__(self):
# 用来存放所有录入人脸特征的数组 / Save the features of faces in the database
self.features_known_list = []
# 存储录入人脸名字 / Save the name of faces known
self.name_known_cnt = 0
self.name_known_list = []
# 存储当前摄像头中捕获到的所有人脸的坐标名字 / Save the positions and names of current faces captured
self.pos_camera_list = []
self.name_camera_list = []
# 存储当前摄像头中捕获到的人脸数
self.faces_cnt = 0
# 存储当前摄像头中捕获到的人脸特征
self.features_camera_list = []
# Update FPS
self.fps = 0
self.frame_start_time = 0
# 从 "features_all.csv" 读取录入人脸特征
def get_face_database(self):
# 1. get database face numbers
cmd_rd = "select count(*) from dlib_face_table;"
cursor.execute(cmd_rd)
results = cursor.fetchall()
person_cnt = int(results[0][0])
# 2. get features for person X
for person in range(person_cnt):
# lookup for personX
cmd_lookup = "select * from dlib_face_table where person_x=\"person_" + str(person + 1) + "\";"
cursor.execute(cmd_lookup)
results = cursor.fetchall()
results = list(results[0][1:])
self.features_known_list.append(results)
self.name_known_list.append("Person_" + str(person + 1))
print(results)
self.name_known_cnt = len(self.name_known_list)
print("Faces in Database:", len(self.features_known_list))
return 1
# 计算两个128D向量间的欧式距离 / Compute the e-distance between two 128D features
@staticmethod
def return_euclidean_distance(feature_1, feature_2):
feature_1 = np.array(feature_1)
feature_2 = np.array(feature_2)
dist = np.sqrt(np.sum(np.square(feature_1 - feature_2)))
return dist
# 更新 FPS / Update FPS of Video stream
def update_fps(self):
now = time.time()
self.frame_time = now - self.frame_start_time
self.fps = 1.0 / self.frame_time
self.frame_start_time = now
def draw_note(self, img_rd):
font = cv2.FONT_ITALIC
cv2.putText(img_rd, "Face Recognizer", (20, 40), font, 1, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(2)), (20, 100), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Faces: " + str(self.faces_cnt), (20, 140), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Q: Quit", (20, 450), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
def draw_name(self, img_rd):
# 在人脸框下面写人脸名字 / Write names under rectangle
font = ImageFont.truetype("simsun.ttc", 30)
img = Image.fromarray(cv2.cvtColor(img_rd, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img)
for i in range(self.faces_cnt):
# cv2.putText(img_rd, self.name_camera_list[i], self.pos_camera_list[i], font, 0.8, (0, 255, 255), 1, cv2.LINE_AA)
draw.text(xy=self.pos_camera_list[i], text=self.name_camera_list[i], font=font)
img_with_name = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
return img_with_name
# 修改显示人名
def modify_name_camera_list(self):
# Default known name: person_1, person_2, person_3
self.name_known_list[0] ='张三'.encode('utf-8').decode()
self.name_known_list[1] ='李四'.encode('utf-8').decode()
# self.name_known_list[2] ='xx'.encode('utf-8').decode()
# self.name_known_list[3] ='xx'.encode('utf-8').decode()
# self.name_known_list[4] ='xx'.encode('utf-8').decode()
# 处理获取的视频流,进行人脸识别 / Input video stream and face reco process
def process(self, stream):
# 1. 读取存放所有人脸特征的 csv
if self.get_face_database():
while stream.isOpened():
flag, img_rd = stream.read()
faces = detector(img_rd, 0)
kk = cv2.waitKey(1)
# 按下 q 键退出 / Press 'q' to quit
if kk == ord('q'):
break
else:
self.draw_note(img_rd)
self.features_camera_list = []
self.faces_cnt = 0
self.pos_camera_list = []
self.name_camera_list = []
# 2. 检测到人脸 / when face detected
if len(faces) != 0:
# 3. 获取当前捕获到的图像的所有人脸的特征,存储到 self.features_camera_list
# 3. Get the features captured and save into self.features_camera_list
for i in range(len(faces)):
shape = predictor(img_rd, faces[i])
self.features_camera_list.append(face_reco_model.compute_face_descriptor(img_rd, shape))
# 4. 遍历捕获到的图像中所有的人脸 / Traversal all the faces in the database
for k in range(len(faces)):
print("##### camera person", k + 1, "#####")
# 让人名跟随在矩形框的下方
# 确定人名的位置坐标
# 先默认所有人不认识,是 unknown
# Set the default names of faces with "unknown"
self.name_camera_list.append("unknown")
# 每个捕获人脸的名字坐标 / Positions of faces captured
self.pos_camera_list.append(tuple(
[faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)]))
# 5. 对于某张人脸,遍历所有存储的人脸特征
# For every faces detected, compare the faces in the database
e_distance_list = []
for i in range(len(self.features_known_list)):
# 如果 person_X 数据不为空
if str(self.features_known_list[i][0]) != '0.0':
print("with person", str(i + 1), "the e distance: ", end='')
e_distance_tmp = self.return_euclidean_distance(self.features_camera_list[k],
self.features_known_list[i])
print(e_distance_tmp)
e_distance_list.append(e_distance_tmp)
else:
# 空数据 person_X
e_distance_list.append(999999999)
# 6. 寻找出最小的欧式距离匹配 / Find the one with minimum e distance
similar_person_num = e_distance_list.index(min(e_distance_list))
print("Minimum e distance with person", self.name_known_list[similar_person_num])
if min(e_distance_list) < 0.4:
self.name_camera_list[k] = self.name_known_list[similar_person_num]
print("May be person " + str(self.name_known_list[similar_person_num]))
else:
print("Unknown person")
# 矩形框 / Draw rectangle
for kk, d in enumerate(faces):
# 绘制矩形框
cv2.rectangle(img_rd, tuple([d.left(), d.top()]), tuple([d.right(), d.bottom()]),
(0, 255, 255), 2)
print('\n')
self.faces_cnt = len(faces)
# 7. 在这里更改显示的人名 / Modify name if needed
# self.modify_name_camera_list()
# 8. 写名字 / Draw name
# self.draw_name(img_rd)
img_with_name = self.draw_name(img_rd)
else:
img_with_name = img_rd
print("Faces in camera now:", self.name_camera_list, "\n")
cv2.imshow("camera", img_with_name)
# 9. 更新 FPS / Update stream FPS
self.update_fps()
# OpenCV 调用摄像头并进行 process
def run(self):
cap = cv2.VideoCapture(0)
cap.set(3, 480)
self.process(cap)
cap.release()
cv2.destroyAllWindows()
def main():
Face_Recognizer_con = Face_Recognizer()
Face_Recognizer_con.run()
if __name__ == '__main__':
main()

306
face_reco_from_camera_ot.py Normal file
View File

@ -0,0 +1,306 @@
# Copyright (C) 2018-2021 coneypo
# SPDX-License-Identifier: MIT
# Author: coneypo
# Blog: http://www.cnblogs.com/AdaminXie
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
# Mail: coneypo@foxmail.com
# 利用 OT 人脸追踪, 进行人脸实时识别 / Real-time face detection and recognition via OT for multi faces
# 检测 -> 识别人脸, 新人脸出现 -> 不需要识别, 而是利用质心追踪来判断识别结果 / Do detection -> recognize face, new face -> not do re-recognition
# 人脸进行再识别需要花费大量时间, 这里用 OT 做跟踪 / Do re-recognition for multi faces will cost much time, OT will be used to instead it
import dlib
import numpy as np
import cv2
import os
import pandas as pd
import time
import logging
# Dlib 正向人脸检测器 / Use frontal face detector of Dlib
detector = dlib.get_frontal_face_detector()
# Dlib 人脸 landmark 特征点检测器 / Get face landmarks
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
# Dlib Resnet 人脸识别模型, 提取 128D 的特征矢量 / Use Dlib resnet50 model to get 128D face descriptor
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
class Face_Recognizer:
def __init__(self):
self.font = cv2.FONT_ITALIC
# FPS
self.frame_time = 0
self.frame_start_time = 0
self.fps = 0
self.fps_show = 0
self.start_time = time.time()
# cnt for frame
self.frame_cnt = 0
# 用来存放所有录入人脸特征的数组 / Save the features of faces in the database
self.face_features_known_list = []
# 存储录入人脸名字 / Save the name of faces in the database
self.face_name_known_list = []
# 用来存储上一帧和当前帧 ROI 的质心坐标 / List to save centroid positions of ROI in frame N-1 and N
self.last_frame_face_centroid_list = []
self.current_frame_face_centroid_list = []
# 用来存储上一帧和当前帧检测出目标的名字 / List to save names of objects in frame N-1 and N
self.last_frame_face_name_list = []
self.current_frame_face_name_list = []
# 上一帧和当前帧中人脸数的计数器 / cnt for faces in frame N-1 and N
self.last_frame_face_cnt = 0
self.current_frame_face_cnt = 0
# 用来存放进行识别时候对比的欧氏距离 / Save the e-distance for faceX when recognizing
self.current_frame_face_X_e_distance_list = []
# 存储当前摄像头中捕获到的所有人脸的坐标名字 / Save the positions and names of current faces captured
self.current_frame_face_position_list = []
# 存储当前摄像头中捕获到的人脸特征 / Save the features of people in current frame
self.current_frame_face_feature_list = []
# e distance between centroid of ROI in last and current frame
self.last_current_frame_centroid_e_distance = 0
# 控制再识别的后续帧数 / Reclassify after 'reclassify_interval' frames
# 如果识别出 "unknown" 的脸, 将在 reclassify_interval_cnt 计数到 reclassify_interval 后, 对于人脸进行重新识别
self.reclassify_interval_cnt = 0
self.reclassify_interval = 10
# 从 "features_all.csv" 读取录入人脸特征 / Get known faces from "features_all.csv"
def get_face_database(self):
if os.path.exists("data/features_all.csv"):
path_features_known_csv = "data/features_all.csv"
csv_rd = pd.read_csv(path_features_known_csv, header=None)
for i in range(csv_rd.shape[0]):
features_someone_arr = []
self.face_name_known_list.append(csv_rd.iloc[i][0])
for j in range(1, 129):
if csv_rd.iloc[i][j] == '':
features_someone_arr.append('0')
else:
features_someone_arr.append(csv_rd.iloc[i][j])
self.face_features_known_list.append(features_someone_arr)
logging.info("Faces in Database: %d", len(self.face_features_known_list))
return 1
else:
logging.warning("'features_all.csv' not found!")
logging.warning("Please run 'get_faces_from_camera.py' "
"and 'features_extraction_to_csv.py' before 'face_reco_from_camera.py'")
return 0
def update_fps(self):
now = time.time()
# 每秒刷新 fps / Refresh fps per second
if str(self.start_time).split(".")[0] != str(now).split(".")[0]:
self.fps_show = self.fps
self.start_time = now
self.frame_time = now - self.frame_start_time
self.fps = 1.0 / self.frame_time
self.frame_start_time = now
@staticmethod
# 计算两个128D向量间的欧式距离 / Compute the e-distance between two 128D features
def return_euclidean_distance(feature_1, feature_2):
feature_1 = np.array(feature_1)
feature_2 = np.array(feature_2)
dist = np.sqrt(np.sum(np.square(feature_1 - feature_2)))
return dist
# 使用质心追踪来识别人脸 / Use centroid tracker to link face_x in current frame with person_x in last frame
def centroid_tracker(self):
for i in range(len(self.current_frame_face_centroid_list)):
e_distance_current_frame_person_x_list = []
# 对于当前帧中的人脸1, 和上一帧中的 人脸1/2/3/4/.. 进行欧氏距离计算 / For object 1 in current_frame, compute e-distance with object 1/2/3/4/... in last frame
for j in range(len(self.last_frame_face_centroid_list)):
self.last_current_frame_centroid_e_distance = self.return_euclidean_distance(
self.current_frame_face_centroid_list[i], self.last_frame_face_centroid_list[j])
e_distance_current_frame_person_x_list.append(
self.last_current_frame_centroid_e_distance)
last_frame_num = e_distance_current_frame_person_x_list.index(
min(e_distance_current_frame_person_x_list))
self.current_frame_face_name_list[i] = self.last_frame_face_name_list[last_frame_num]
# 生成的 cv2 window 上面添加说明文字 / putText on cv2 window
def draw_note(self, img_rd):
# 添加说明 / Add some info on windows
cv2.putText(img_rd, "Face Recognizer with OT", (20, 40), self.font, 1, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Frame: " + str(self.frame_cnt), (20, 100), self.font, 0.8, (0, 255, 0), 1,
cv2.LINE_AA)
cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(2)), (20, 130), self.font, 0.8, (0, 255, 0), 1,
cv2.LINE_AA)
cv2.putText(img_rd, "Faces: " + str(self.current_frame_face_cnt), (20, 160), self.font, 0.8, (0, 255, 0), 1,
cv2.LINE_AA)
cv2.putText(img_rd, "Q: Quit", (20, 450), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
for i in range(len(self.current_frame_face_name_list)):
img_rd = cv2.putText(img_rd, "Face_" + str(i + 1), tuple(
[int(self.current_frame_face_centroid_list[i][0]), int(self.current_frame_face_centroid_list[i][1])]),
self.font,
0.8, (255, 190, 0),
1,
cv2.LINE_AA)
# 处理获取的视频流, 进行人脸识别 / Face detection and recognition wit OT from input video stream
def process(self, stream):
# 1. 读取存放所有人脸特征的 csv / Get faces known from "features.all.csv"
if self.get_face_database():
while stream.isOpened():
self.frame_cnt += 1
logging.debug("Frame " + str(self.frame_cnt) + " starts")
flag, img_rd = stream.read()
kk = cv2.waitKey(1)
# 2. 检测人脸 / Detect faces for frame X
faces = detector(img_rd, 0)
# 3. 更新人脸计数器 / Update cnt for faces in frames
self.last_frame_face_cnt = self.current_frame_face_cnt
self.current_frame_face_cnt = len(faces)
# 4. 更新上一帧中的人脸列表 / Update the face name list in last frame
self.last_frame_face_name_list = self.current_frame_face_name_list[:]
# 5. 更新上一帧和当前帧的质心列表 / update frame centroid list
self.last_frame_face_centroid_list = self.current_frame_face_centroid_list
self.current_frame_face_centroid_list = []
# 6.1 如果当前帧和上一帧人脸数没有变化 / if cnt not changes
if (self.current_frame_face_cnt == self.last_frame_face_cnt) and (
self.reclassify_interval_cnt != self.reclassify_interval):
logging.debug("scene 1: 当前帧和上一帧相比没有发生人脸数变化 / No face cnt changes in this frame!!!")
self.current_frame_face_position_list = []
if "unknown" in self.current_frame_face_name_list:
logging.debug(" 有未知人脸, 开始进行 reclassify_interval_cnt 计数")
self.reclassify_interval_cnt += 1
if self.current_frame_face_cnt != 0:
for k, d in enumerate(faces):
self.current_frame_face_position_list.append(tuple(
[faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)]))
self.current_frame_face_centroid_list.append(
[int(faces[k].left() + faces[k].right()) / 2,
int(faces[k].top() + faces[k].bottom()) / 2])
img_rd = cv2.rectangle(img_rd,
tuple([d.left(), d.top()]),
tuple([d.right(), d.bottom()]),
(255, 255, 255), 2)
# 如果当前帧中有多个人脸, 使用质心追踪 / Multi-faces in current frame, use centroid-tracker to track
if self.current_frame_face_cnt != 1:
self.centroid_tracker()
for i in range(self.current_frame_face_cnt):
# 6.2 Write names under ROI
img_rd = cv2.putText(img_rd, self.current_frame_face_name_list[i],
self.current_frame_face_position_list[i], self.font, 0.8, (0, 255, 255), 1,
cv2.LINE_AA)
self.draw_note(img_rd)
# 6.2 如果当前帧和上一帧人脸数发生变化 / If cnt of faces changes, 0->1 or 1->0 or ...
else:
logging.debug("scene 2: 当前帧和上一帧相比人脸数发生变化 / Faces cnt changes in this frame")
self.current_frame_face_position_list = []
self.current_frame_face_X_e_distance_list = []
self.current_frame_face_feature_list = []
self.reclassify_interval_cnt = 0
# 6.2.1 人脸数减少 / Face cnt decreases: 1->0, 2->1, ...
if self.current_frame_face_cnt == 0:
logging.debug(" scene 2.1 人脸消失, 当前帧中没有人脸 / No faces in this frame!!!")
# clear list of names and features
self.current_frame_face_name_list = []
# 6.2.2 人脸数增加 / Face cnt increase: 0->1, 0->2, ..., 1->2, ...
else:
logging.debug(" scene 2.2 出现人脸, 进行人脸识别 / Get faces in this frame and do face recognition")
self.current_frame_face_name_list = []
for i in range(len(faces)):
shape = predictor(img_rd, faces[i])
self.current_frame_face_feature_list.append(
face_reco_model.compute_face_descriptor(img_rd, shape))
self.current_frame_face_name_list.append("unknown")
# 6.2.2.1 遍历捕获到的图像中所有的人脸 / Traversal all the faces in the database
for k in range(len(faces)):
logging.debug(" For face %d in current frame:", k + 1)
self.current_frame_face_centroid_list.append(
[int(faces[k].left() + faces[k].right()) / 2,
int(faces[k].top() + faces[k].bottom()) / 2])
self.current_frame_face_X_e_distance_list = []
# 6.2.2.2 每个捕获人脸的名字坐标 / Positions of faces captured
self.current_frame_face_position_list.append(tuple(
[faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)]))
# 6.2.2.3 对于某张人脸, 遍历所有存储的人脸特征
# For every faces detected, compare the faces in the database
for i in range(len(self.face_features_known_list)):
# 如果 q 数据不为空
if str(self.face_features_known_list[i][0]) != '0.0':
e_distance_tmp = self.return_euclidean_distance(
self.current_frame_face_feature_list[k],
self.face_features_known_list[i])
logging.debug(" with person %d, the e-distance: %f", i + 1, e_distance_tmp)
self.current_frame_face_X_e_distance_list.append(e_distance_tmp)
else:
# 空数据 person_X
self.current_frame_face_X_e_distance_list.append(999999999)
# 6.2.2.4 寻找出最小的欧式距离匹配 / Find the one with minimum e distance
similar_person_num = self.current_frame_face_X_e_distance_list.index(
min(self.current_frame_face_X_e_distance_list))
if min(self.current_frame_face_X_e_distance_list) < 0.4:
self.current_frame_face_name_list[k] = self.face_name_known_list[similar_person_num]
logging.debug(" Face recognition result: %s",
self.face_name_known_list[similar_person_num])
else:
logging.debug(" Face recognition result: Unknown person")
# 7. 生成的窗口添加说明文字 / Add note on cv2 window
self.draw_note(img_rd)
# cv2.imwrite("debug/debug_" + str(self.frame_cnt) + ".png", img_rd) # Dump current frame image if needed
# 8. 按下 'q' 键退出 / Press 'q' to exit
if kk == ord('q'):
break
self.update_fps()
cv2.namedWindow("camera", 1)
cv2.imshow("camera", img_rd)
logging.debug("Frame ends\n\n")
def run(self):
# cap = cv2.VideoCapture("video.mp4") # Get video stream from video file
cap = cv2.VideoCapture(0) # Get video stream from camera
self.process(cap)
cap.release()
cv2.destroyAllWindows()
def main():
# logging.basicConfig(level=logging.DEBUG) # Set log level to 'logging.DEBUG' to print debug info of every frame
logging.basicConfig(level=logging.INFO)
Face_Recognizer_con = Face_Recognizer()
Face_Recognizer_con.run()
if __name__ == '__main__':
main()

View File

@ -1,94 +1,136 @@
# 从人脸图像文件中提取人脸特征存入 CSV
# Features extraction from images and save into features_all.csv
# Author: coneypo
# Blog: http://www.cnblogs.com/AdaminXie
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
# Mail: coneypo@foxmail.com
# Created at 2018-05-11
# Updated at 2020-04-02
# Copyright (C) 2018-2021 coneypo
# SPDX-License-Identifier: MIT
import os
import dlib
from skimage import io
import csv
import numpy as np
import logging
import cv2
from PIL import Image
# 要读取人脸图像文件的路径
path_images_from_camera = "data/data_faces_from_camera/"
path_images_from_camera = "data/data_faces"
# 1. Dlib 正向人脸检测器
# Dlib 检测器
detector = dlib.get_frontal_face_detector()
# 2. Dlib 人脸 landmark 特征点检测器
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
# 3. Dlib Resnet 人脸识别模型,提取 128D 的特征矢量
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
# 返回单张图像的 128D 特征
def return_128d_features(path_img):
img_rd = io.imread(path_img)
faces = detector(img_rd, 1)
"""返回单张图像的 128D 特征"""
try:
img_pil = Image.open(path_img)
img_np = np.array(img_pil)
img_rd = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
faces = detector(img_rd, 1)
print("%-40s %-20s" % ("检测到人脸的图像 / Image with faces detected:", path_img), '\n')
logging.info("%-40s %-20s", "检测到人脸的图像:", path_img)
# 因为有可能截下来的人脸再去检测,检测不出来人脸了
# 所以要确保是 检测到人脸的人脸图像 拿去算特征
if len(faces) != 0:
shape = predictor(img_rd, faces[0])
face_descriptor = face_reco_model.compute_face_descriptor(img_rd, shape)
else:
face_descriptor = 0
print("no face")
return face_descriptor
if len(faces) != 0:
shape = predictor(img_rd, faces[0])
face_descriptor = face_reco_model.compute_face_descriptor(img_rd, shape)
return face_descriptor
else:
logging.warning("未检测到人脸: %s", path_img)
return None
except Exception as e:
logging.error("处理图像时出错 %s: %s", path_img, e)
return None
# 将文件夹中照片特征提取出来, 写入 CSV
def return_features_mean_personX(path_faces_personX):
def return_features_mean_personX(path_face_personX):
"""返回 personX 的 128D 特征均值"""
features_list_personX = []
photos_list = os.listdir(path_faces_personX)
photos_list = os.listdir(path_face_personX)
if photos_list:
for i in range(len(photos_list)):
# 调用return_128d_features()得到128d特征
print("%-40s %-20s" % ("正在读的人脸图像 / Image to read:", path_faces_personX + "/" + photos_list[i]))
features_128d = return_128d_features(path_faces_personX + "/" + photos_list[i])
# print(features_128d)
# 遇到没有检测出人脸的图片跳过
if features_128d == 0:
i += 1
else:
for photo in photos_list:
photo_path = os.path.join(path_face_personX, photo)
logging.info("正在读取图像: %s", photo_path)
features_128d = return_128d_features(photo_path)
if features_128d is not None:
features_list_personX.append(features_128d)
else:
print("文件夹内图像文件为空 / Warning: No images in " + path_faces_personX + '/', '\n')
logging.warning("文件夹为空: %s", path_face_personX)
# 计算 128D 特征的均值
# personX 的 N 张图像 x 128D -> 1 x 128D
if features_list_personX:
features_mean_personX = np.array(features_list_personX).mean(axis=0)
else:
features_mean_personX = np.zeros(128, dtype=int, order='C')
features_mean_personX = np.zeros(128, dtype=np.float64)
return features_mean_personX
# 获取已录入的最后一个人脸序号 / get the num of latest person
person_list = os.listdir("data/data_faces_from_camera/")
person_num_list = []
for person in person_list:
person_num_list.append(int(person.split('_')[-1]))
person_cnt = max(person_num_list)
def get_person_name_from_folder(folder_name):
"""从文件夹名称获取有意义的姓名"""
# 常见的文件夹前缀
prefixes = ['person_', 'face_', 'user_']
for person in range(person_cnt):
# Get the mean/average features of face/personX, it will be a list with a length of 128D
print(path_images_from_camera + "person_" + str(person + 1))
features_mean_personX = return_features_mean_personX(path_images_from_camera + "person_" + str(person + 1))
for prefix in prefixes:
if folder_name.startswith(prefix):
name_part = folder_name[len(prefix):]
# 如果剩下的部分是纯数字,使用完整文件夹名
if name_part.isdigit():
return folder_name
else:
return name_part
print(features_mean_personX.shape)
print(features_mean_personX[0])
return folder_name
print("特征均值 / The mean of features:", list(features_mean_personX))
print('\n')
def main():
logging.basicConfig(level=logging.INFO)
# 检查源文件夹是否存在
if not os.path.exists(path_images_from_camera):
logging.error("人脸图像文件夹不存在: %s", path_images_from_camera)
return
# 获取人脸文件夹列表
person_list = os.listdir(path_images_from_camera)
person_list.sort()
if not person_list:
logging.error("没有人脸文件夹可处理")
return
logging.info("找到 %d 个人脸文件夹: %s", len(person_list), person_list)
# 创建CSV文件
with open("data/features_all.csv", "w", newline="", encoding="utf-8") as csvfile:
writer = csv.writer(csvfile)
successful_count = 0
for person_folder in person_list:
folder_path = os.path.join(path_images_from_camera, person_folder)
if not os.path.isdir(folder_path):
continue
logging.info("处理文件夹: %s", person_folder)
# 提取特征
features_mean = return_features_mean_personX(folder_path)
# 获取有意义的姓名
person_name = get_person_name_from_folder(person_folder)
logging.info("使用姓名: %s", person_name)
# 构建行数据:姓名 + 128维特征
row_data = [person_name] + features_mean.tolist()
writer.writerow(row_data)
successful_count += 1
logging.info("完成: %s", person_name)
logging.info("-" * 50)
logging.info("成功处理 %d/%d 个人脸文件夹", successful_count, len(person_list))
logging.info("特征数据已保存到: data/features_all.csv")
if __name__ == '__main__':
main()

View File

@ -1,117 +0,0 @@
# 从人脸图像文件中提取人脸特征存入 CSV
# Features extraction from images and save into features_all.csv
# Author: coneypo
# Blog: http://www.cnblogs.com/AdaminXie
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
# Mail: coneypo@foxmail.com
# Created at 2018-05-11
# Updated at 2020-04-02
import os
import dlib
from skimage import io
import numpy as np
import pymysql
db = pymysql.connect("localhost", "root", "intel@123", "dlib_database")
cursor = db.cursor()
# 要读取人脸图像文件的路径
path_images_from_camera = "data/data_faces_from_camera/"
# 1. Dlib 正向人脸检测器
detector = dlib.get_frontal_face_detector()
# 2. Dlib 人脸 landmark 特征点检测器
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
# 3. Dlib Resnet 人脸识别模型,提取 128D 的特征矢量
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
# 返回单张图像的 128D 特征
def return_128d_features(path_img):
img_rd = io.imread(path_img)
faces = detector(img_rd, 1)
print("%-40s %-20s" % ("检测到人脸的图像 / Image with faces detected:", path_img), '\n')
# 因为有可能截下来的人脸再去检测,检测不出来人脸了
# 所以要确保是 检测到人脸的人脸图像 拿去算特征
if len(faces) != 0:
shape = predictor(img_rd, faces[0])
face_descriptor = face_reco_model.compute_face_descriptor(img_rd, shape)
else:
face_descriptor = 0
print("no face")
return face_descriptor
# 将文件夹中照片特征提取出来, 写入 CSV
def return_features_mean_personX(path_faces_personX):
features_list_personX = []
photos_list = os.listdir(path_faces_personX)
if photos_list:
for i in range(len(photos_list)):
# 调用return_128d_features()得到128d特征
print("%-40s %-20s" % ("正在读的人脸图像 / Image to read:", path_faces_personX + "/" + photos_list[i]))
features_128d = return_128d_features(path_faces_personX + "/" + photos_list[i])
# print(features_128d)
# 遇到没有检测出人脸的图片跳过
if features_128d == 0:
i += 1
else:
features_list_personX.append(features_128d)
else:
print("文件夹内图像文件为空 / Warning: No images in " + path_faces_personX + '/', '\n')
# 计算 128D 特征的均值
# personX 的 N 张图像 x 128D -> 1 x 128D
if features_list_personX:
features_mean_personX = np.array(features_list_personX).mean(axis=0)
else:
features_mean_personX = np.zeros(128, dtype=int, order='C')
return features_mean_personX
# 获取已录入的最后一个人脸序号 / get the num of latest person
person_list = os.listdir("data/data_faces_from_camera/")
person_num_list = []
for person in person_list:
person_num_list.append(int(person.split('_')[-1]))
person_cnt = max(person_num_list)
# 0. clear table in mysql
# cursor.execute("truncate dlib_face_table;")
# 1. check existing people in mysql
cursor.execute("select count(*) from dlib_face_table;")
person_start = int(cursor.fetchall()[0][0])
for person in range(person_start, person_cnt):
# Get the mean/average features of face/personX, it will be a list with a length of 128D
print(path_images_from_camera + "person_" + str(person + 1))
features_mean_personX = return_features_mean_personX(path_images_from_camera + "person_" + str(person + 1))
print("特征均值 / The mean of features:", list(features_mean_personX))
print('\n')
# 2. Insert person 1 to person X
cursor.execute("insert into dlib_face_table(person_x) values(\"person_"+str(person+1)+"\");")
# 3. Insert features for person X
for i in range(128):
# update issue_info set github_status='Open', github_type='bug' where github_id='2222';
print("update dlib_face_table set feature_" + str(i + 1) + '=\"' + str(
features_mean_personX[i]) + "\" where person_x=\"person_" + str(person + 1) + "\";")
cursor.execute("update dlib_face_table set feature_" + str(i + 1) + '=\"' + str(
features_mean_personX[i]) + "\" where person_x=\"person_" + str(person + 1) + "\";")
db.commit()

232
get_faces.py Executable file
View File

@ -0,0 +1,232 @@
# Copyright (C) 2018-2021 coneypo
# SPDX-License-Identifier: MIT
import dlib
import numpy as np
import cv2
import os
import shutil
import time
import logging
# Dlib 正向人脸检测器
detector = dlib.get_frontal_face_detector()
class Face_Register:
def __init__(self):
self.path_photos_from_camera = "data/data_faces/"
self.font = cv2.FONT_ITALIC
self.existing_faces_cnt = 0
self.ss_cnt = 0
self.current_frame_faces_cnt = 0
self.save_flag = 1
self.press_n_flag = 0
self.current_person_name = "" # 新增:当前录入人姓名
# FPS
self.frame_time = 0
self.frame_start_time = 0
self.fps = 0
self.fps_show = 0
self.start_time = time.time()
def pre_work_mkdir(self):
if os.path.isdir(self.path_photos_from_camera):
pass
else:
os.makedirs(self.path_photos_from_camera, exist_ok=True)
def pre_work_del_old_face_folders(self):
folders_rd = os.listdir(self.path_photos_from_camera)
for folder in folders_rd:
shutil.rmtree(os.path.join(self.path_photos_from_camera, folder))
if os.path.isfile("data/features_all.csv"):
os.remove("data/features_all.csv")
def check_existing_faces_cnt(self):
if os.listdir(self.path_photos_from_camera):
person_list = os.listdir(self.path_photos_from_camera)
# 修改:不再提取数字序号,而是统计数量
self.existing_faces_cnt = len(person_list)
else:
self.existing_faces_cnt = 0
def update_fps(self):
now = time.time()
if str(self.start_time).split(".")[0] != str(now).split(".")[0]:
self.fps_show = self.fps
self.start_time = now
self.frame_time = now - self.frame_start_time
self.fps = 1.0 / self.frame_time
self.frame_start_time = now
def draw_note(self, img_rd):
# 添加说明
cv2.putText(img_rd, "Face Register", (20, 40), self.font, 1, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "FPS: " + str(self.fps_show.__round__(2)), (20, 100), self.font, 0.8, (0, 255, 0), 1,
cv2.LINE_AA)
cv2.putText(img_rd, "Faces: " + str(self.current_frame_faces_cnt), (20, 140), self.font, 0.8, (0, 255, 0), 1,
cv2.LINE_AA)
# 修改:显示当前录入人姓名
if self.current_person_name:
cv2.putText(img_rd, f"Name: {self.current_person_name}", (20, 180), self.font, 0.8, (255, 255, 0), 1,
cv2.LINE_AA)
cv2.putText(img_rd, "N: Input Name & Create folder", (20, 320), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "S: Save current face", (20, 350), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Q: Quit", (20, 380), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "D: Delete all data", (20, 410), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
def get_person_name_from_input(self):
"""从用户输入获取姓名"""
print("\n请输入姓名(中文或英文):")
name = input().strip()
return name if name else f"person_{self.existing_faces_cnt + 1}"
def create_person_folder(self, person_name):
"""创建人员文件夹"""
# 清理文件名中的非法字符
safe_name = "".join(c for c in person_name if c.isalnum() or c in (' ', '-', '_')).rstrip()
if not safe_name:
safe_name = f"person_{self.existing_faces_cnt + 1}"
# 创建文件夹路径
folder_name = f"person_{safe_name}"
current_face_dir = os.path.join(self.path_photos_from_camera, folder_name)
os.makedirs(current_face_dir, exist_ok=True)
logging.info("新建人脸文件夹: %s", current_face_dir)
return current_face_dir, safe_name
def process(self, stream):
# 1. 新建储存人脸图像文件目录
self.pre_work_mkdir()
# 2. 检查已有人脸文件
self.check_existing_faces_cnt()
current_face_dir = ""
print("人脸录入说明:")
print("- 按 'N': 输入姓名并创建新人员文件夹")
print("- 按 'S': 保存当前检测到的人脸")
print("- 按 'D': 删除所有已录入数据")
print("- 按 'Q': 退出程序")
while stream.isOpened():
flag, img_rd = stream.read()
if not flag:
break
kk = cv2.waitKey(1)
faces = detector(img_rd, 0)
# 4. 按下 'n' 输入姓名并新建文件夹
if kk == ord('n'):
person_name = self.get_person_name_from_input()
current_face_dir, self.current_person_name = self.create_person_folder(person_name)
self.ss_cnt = 0
self.press_n_flag = 1
print(f"已创建文件夹: {current_face_dir}")
print("请调整位置并按 'S' 保存人脸")
# 5. 按下 'd' 删除所有数据
elif kk == ord('d'):
confirm = input("确定要删除所有数据吗?(y/n): ")
if confirm.lower() == 'y':
self.pre_work_del_old_face_folders()
self.existing_faces_cnt = 0
self.current_person_name = ""
self.press_n_flag = 0
print("所有数据已删除")
continue
# 6. 检测到人脸
if len(faces) != 0:
for k, d in enumerate(faces):
# 计算矩形框大小
height = d.bottom() - d.top()
width = d.right() - d.left()
hh = int(height / 2)
ww = int(width / 2)
# 判断人脸是否在范围内
if (d.right() + ww > 640 or d.bottom() + hh > 480 or
d.left() - ww < 0 or d.top() - hh < 0):
cv2.putText(img_rd, "OUT OF RANGE", (20, 300), self.font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)
color_rectangle = (0, 0, 255)
save_flag = 0
else:
color_rectangle = (255, 255, 255)
save_flag = 1
# 绘制人脸框
cv2.rectangle(img_rd,
(d.left() - ww, d.top() - hh),
(d.right() + ww, d.bottom() + hh),
color_rectangle, 2)
# 创建空白图像用于保存人脸
img_blank = np.zeros((height * 2, width * 2, 3), np.uint8)
if save_flag and kk == ord('s'):
# 检查是否已创建文件夹
if self.press_n_flag:
self.ss_cnt += 1
# 提取人脸区域
for ii in range(height * 2):
for jj in range(width * 2):
img_blank[ii][jj] = img_rd[d.top() - hh + ii][d.left() - ww + jj]
# 保存人脸图像
filename = f"img_face_{self.ss_cnt}.jpg"
filepath = os.path.join(current_face_dir, filename)
cv2.imwrite(filepath, img_blank)
logging.info("保存人脸: %s", filepath)
print(f"已保存第 {self.ss_cnt} 张人脸图片")
else:
logging.warning("请先按 'N' 输入姓名创建文件夹")
self.current_frame_faces_cnt = len(faces)
# 绘制说明文字
self.draw_note(img_rd)
# 按下 'q' 退出
if kk == ord('q'):
break
# 更新 FPS
self.update_fps()
cv2.imshow("Face Register", img_rd)
def run(self):
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("错误: 无法打开摄像头")
return
# 设置摄像头参数
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
self.process(cap)
cap.release()
cv2.destroyAllWindows()
print("程序结束")
def main():
logging.basicConfig(level=logging.INFO)
Face_Register_con = Face_Register()
Face_Register_con.run()
if __name__ == '__main__':
main()

378
get_faces_UI.py Normal file
View File

@ -0,0 +1,378 @@
# Copyright (C) 2018-2021 coneypo
# SPDX-License-Identifier: MIT
# Author: coneypo
# Blog: http://www.cnblogs.com/AdaminXie
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
# Mail: coneypo@foxmail.com
# 人脸录入 Tkinter GUI / Face register GUI with tkinter
import dlib
import numpy as np
import cv2
import os
import shutil
import time
import logging
import tkinter as tk
from tkinter import font as tkFont
from tkinter import messagebox
from PIL import Image, ImageTk
# Dlib 正向人脸检测器 / Use frontal face detector of Dlib
detector = dlib.get_frontal_face_detector()
class Face_Register:
def __init__(self):
self.current_frame_faces_cnt = 0 # 当前帧中人脸计数器 / cnt for counting faces in current frame
self.existing_faces = 0 # 已录入的人脸数 / cnt for counting saved faces
self.ss_cnt = 0 # 录入 person_n 人脸时图片计数器 / cnt for screen shots
self.registered_names = [] # 已录入的人脸名字 / names of registered faces
self.path_photos_from_camera = "data/data_faces_from_camera/"
self.current_face_dir = ""
self.font = cv2.FONT_ITALIC
if os.listdir(self.path_photos_from_camera):
self.existing_faces = len(os.listdir(self.path_photos_from_camera))
# Tkinter GUI
self.win = tk.Tk()
self.win.title("人脸录入")
# PLease modify window size here if needed
self.win.geometry("1300x550")
# GUI left part
self.frame_left_camera = tk.Frame(self.win)
self.label = tk.Label(self.win)
self.label.pack(side=tk.LEFT)
self.frame_left_camera.pack()
# GUI right part
self.frame_right_info = tk.Frame(self.win)
self.label_cnt_face_in_database = tk.Label(self.frame_right_info, text=str(self.existing_faces))
self.label_fps_info = tk.Label(self.frame_right_info, text="")
self.input_name = tk.Entry(self.frame_right_info, width=25)
self.input_name_char = ""
self.label_warning = tk.Label(self.frame_right_info)
self.label_face_cnt = tk.Label(self.frame_right_info, text="Faces in current frame: ")
self.log_all = tk.Label(self.frame_right_info)
self.font_title = tkFont.Font(family='Helvetica', size=20, weight='bold')
self.font_step_title = tkFont.Font(family='Helvetica', size=15, weight='bold')
self.font_warning = tkFont.Font(family='Helvetica', size=15, weight='bold')
# Current frame and face ROI position
self.current_frame = np.ndarray
self.face_ROI_image = np.ndarray
self.face_ROI_width_start = 0
self.face_ROI_height_start = 0
self.face_ROI_width = 0
self.face_ROI_height = 0
self.ww = 0
self.hh = 0
self.out_of_range_flag = False
self.face_folder_created_flag = False
# FPS
self.frame_time = 0
self.frame_start_time = 0
self.fps = 0
self.fps_show = 0
self.start_time = time.time()
self.cap = cv2.VideoCapture(0) # Get video stream from camera
# self.cap = cv2.VideoCapture("test.mp4") # Input local video
# 删除之前存的人脸数据文件夹 / Delete old face folders
def GUI_clear_data(self):
# 删除之前存的人脸数据文件夹, 删除 "/data_faces_from_camera/person_x/"...
folders_rd = os.listdir(self.path_photos_from_camera)
for i in range(len(folders_rd)):
shutil.rmtree(self.path_photos_from_camera + folders_rd[i])
if os.path.isfile("./data/features_all.csv"):
os.remove("./data/features_all.csv")
self.label_cnt_face_in_database['text'] = "0"
self.registered_names.clear()
self.log_all["text"] = "全部图片和`features_all.csv`已全部移除!"
self.log_all["fg"] = "green"
def GUI_get_input_name(self):
self.input_name_char = self.input_name.get()
if self.input_name_char:
if self.input_name_char not in self.registered_names:
self.create_face_folder()
self.registered_names.append(self.input_name_char)
self.label_cnt_face_in_database['text'] = str(self.registered_names.__len__())
else:
self.log_all["text"] = "此名字已被录入,请输入新的名字!"
self.log_all["fg"] = "red"
else:
self.log_all["text"] = "请输入姓名"
self.log_all["fg"] = "red"
def delete_name(self):
self.input_name_char = self.input_name.get()
if self.input_name_char:
if self.input_name_char in self.registered_names:
self.remove_face_dir(self.path_photos_from_camera + "person_" + self.input_name_char)
self.log_all["text"] = "'" + self.input_name_char + "'" + "已移除!"
self.log_all["fg"] = "green"
self.registered_names.remove(self.input_name_char)
self.label_cnt_face_in_database['text'] = str(self.registered_names.__len__())
else:
self.log_all["text"] = "此名字不存在,请输入正确的名字!"
self.log_all["fg"] = "red"
else:
self.log_all["text"] = "请先输入要删除的姓名"
self.log_all["fg"] = "red"
def change_name(self):
self.input_name_char = self.input_name.get()
if self.input_name_char:
if self.input_name_char in self.registered_names:
self.current_face_dir = self.path_photos_from_camera + \
"person_" + \
self.input_name_char
pecturt_list = os.listdir(self.current_face_dir)
self.ss_cnt = len(pecturt_list) # 将人脸计数器置为原来的 / Clear the cnt of screen shots
self.face_folder_created_flag = True # Face folder already created
self.label_cnt_face_in_database['text'] = str(self.registered_names.__len__())
self.log_all["text"] = "可以添加新照片了!"
self.log_all["fg"] = "green"
else:
self.log_all["text"] = "此名字不存在,请输入正确的名字!"
self.log_all["fg"] = "red"
else:
self.log_all["text"] = "请先输入要更改的姓名"
self.log_all["fg"] = "red"
def GUI_info(self):
tk.Label(self.frame_right_info,
text="Face register",
font=self.font_title).grid(row=0, column=0, columnspan=3, sticky=tk.W, padx=2, pady=20)
tk.Label(self.frame_right_info,
text="FPS: ").grid(row=1, column=0, columnspan=2, sticky=tk.W, padx=5, pady=2)
self.label_fps_info.grid(row=1, column=2, sticky=tk.W, padx=5, pady=2)
tk.Label(self.frame_right_info,
text="数据库中已有的人脸: ").grid(row=2, column=0, columnspan=2, sticky=tk.W, padx=5, pady=2)
self.label_cnt_face_in_database.grid(row=2, column=2, columnspan=3, sticky=tk.W, padx=5, pady=2)
tk.Label(self.frame_right_info,
text="当前帧中的人脸: ").grid(row=3, column=0, columnspan=2, sticky=tk.W, padx=5, pady=2)
self.label_face_cnt.grid(row=3, column=2, columnspan=3, sticky=tk.W, padx=5, pady=2)
self.label_warning.grid(row=4, column=0, columnspan=3, sticky=tk.W, padx=5, pady=2)
# Step 1: Clear old data
tk.Label(self.frame_right_info,
font=self.font_step_title,
text="删除之前存的人脸数据文件夹").grid(row=5, column=0, columnspan=2, sticky=tk.W, padx=5, pady=20)
tk.Button(self.frame_right_info,
text='删除全部',
command=self.GUI_clear_data).grid(row=6, column=0, columnspan=3, sticky=tk.W, padx=5, pady=2)
# Step 2: Input name and create folders for face
tk.Label(self.frame_right_info,
font=self.font_step_title,
text="Step 1: 输入姓名").grid(row=7, column=0, columnspan=2, sticky=tk.W, padx=5, pady=20)
tk.Label(self.frame_right_info, text="姓名: ").grid(row=8, column=0, sticky=tk.W, padx=5, pady=0)
self.input_name.grid(row=8, column=1, sticky=tk.W, padx=0, pady=2)
tk.Button(self.frame_right_info,
text='录入',
command=self.GUI_get_input_name).grid(row=8, column=2, padx=5)
tk.Button(self.frame_right_info,
text='更改',
command=self.change_name).grid(row=8, column=3, padx=5)
tk.Button(self.frame_right_info,
text='删除',
command=self.delete_name).grid(row=8, column=4, padx=5)
# Step 3: Save current face in frame
tk.Label(self.frame_right_info,
font=self.font_step_title,
text="Step 2: 保存当前人脸图片").grid(row=9, column=0, columnspan=2, sticky=tk.W, padx=5, pady=20)
tk.Button(self.frame_right_info,
text='保存',
command=self.save_current_face).grid(row=10, column=0, columnspan=3, sticky=tk.W)
# Show log in GUI
self.log_all.grid(row=11, column=0, columnspan=20, sticky=tk.W, padx=5, pady=20)
self.frame_right_info.pack()
# 新建保存人脸图像文件和数据 CSV 文件夹 / Mkdir for saving photos and csv
def pre_work_mkdir(self):
# 新建文件夹 / Create folders to save face images and csv
if os.path.isdir(self.path_photos_from_camera):
pass
else:
os.makedirs(self.path_photos_from_camera)
# 如果有之前录入的人脸, 在之前 person_x 的序号按照 person_x+1 开始录入 / Start from person_x+1
def check_existing_faces(self):
if os.listdir(self.path_photos_from_camera):
# 获取已录入的最后一个人脸序号 / Get the order of latest person
person_list = os.listdir(self.path_photos_from_camera)
for person in person_list:
name = person.split('_')[1]
self.registered_names.append(name)
self.existing_faces = len(person_list)
# 如果第一次存储或者没有之前录入的人脸, 按照 person_1 开始录入 / Start from person_1
else:
self.registered_names.clear()
print("No previous data.")
# 更新 FPS / Update FPS of Video stream
def update_fps(self):
now = time.time()
# 每秒刷新 fps / Refresh fps per second
if str(self.start_time).split(".")[0] != str(now).split(".")[0]:
self.fps_show = self.fps
self.start_time = now
self.frame_time = now - self.frame_start_time
self.fps = 1.0 / self.frame_time
self.frame_start_time = now
formatted_fps = "{:.2f}".format(self.fps)
self.label_fps_info["text"] = str(formatted_fps)
def create_face_folder(self):
# 新建存储人脸的文件夹 / Create the folders for saving faces
self.current_face_dir = self.path_photos_from_camera + \
"person_" + \
self.input_name_char
os.makedirs(self.current_face_dir)
self.log_all["text"] = "\"" + self.current_face_dir + "/\" created!"
self.log_all["fg"] = "green"
logging.info("\n%-40s %s", "新建的人脸文件夹 / Create folders:", self.current_face_dir)
self.ss_cnt = 0 # 将人脸计数器清零 / Clear the cnt of screen shots
self.face_folder_created_flag = True # Face folder already created
def remove_face_dir(self, folder_path):
try:
shutil.rmtree(folder_path)
print(f"Folder '{folder_path}' has been deleted successfully.")
except Exception as e:
print(f"Failed to delete folder '{folder_path}'. Error: {e}")
def save_current_face(self):
if self.face_folder_created_flag:
if self.current_frame_faces_cnt == 1:
if not self.out_of_range_flag:
self.ss_cnt += 1
# 根据人脸大小生成空的图像 / Create blank image according to the size of face detected
self.face_ROI_image = np.zeros((int(self.face_ROI_height * 2), self.face_ROI_width * 2, 3),
np.uint8)
for ii in range(self.face_ROI_height * 2):
for jj in range(self.face_ROI_width * 2):
self.face_ROI_image[ii][jj] = self.current_frame[self.face_ROI_height_start - self.hh + ii][
self.face_ROI_width_start - self.ww + jj]
self.log_all["text"] = "\"" + self.current_face_dir + "/img_face_" + str(
self.ss_cnt) + ".jpg\"" + " 保存成功!"
self.log_all["fg"] = "green"
# 使用Pillow保存图像
img_pil = Image.fromarray(self.face_ROI_image)
img_pil.save(self.current_face_dir + "/img_face_" + str(self.ss_cnt) + ".jpg")
logging.info("%-40s %s/img_face_%s.jpg", "写入本地 / Save into:",
str(self.current_face_dir), str(self.ss_cnt) + ".jpg")
else:
self.log_all["text"] = "人脸不在范围内(人脸框白色才能保存)!"
self.log_all["fg"] = "red"
else:
self.log_all["text"] = "没找到人脸或者找到多个人脸"
self.log_all["fg"] = "red"
else:
self.log_all["text"] = "请先执行step 1"
self.log_all["fg"] = "red"
def get_frame(self):
try:
if self.cap.isOpened():
ret, frame = self.cap.read()
if ret:
return ret, cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
else:
raise Exception("Unable to open the camera")
except Exception as e:
messagebox.showerror("Error", f"没有找到摄像头!!!{e}\n")
print("Error: No video input!!!{e}")
# 获取人脸 / Main process of face detection and saving
def process(self):
ret, self.current_frame = self.get_frame()
faces = detector(self.current_frame, 0)
# Get frame
if ret:
self.update_fps()
self.label_face_cnt["text"] = str(len(faces))
# 检测到人脸 / Face detected
if len(faces) != 0:
# 矩形框 / Show the ROI of faces
for k, d in enumerate(faces):
self.face_ROI_width_start = d.left()
self.face_ROI_height_start = d.top()
# 计算矩形框大小 / Compute the size of rectangle box
self.face_ROI_height = (d.bottom() - d.top())
self.face_ROI_width = (d.right() - d.left())
self.hh = int(self.face_ROI_height / 2)
self.ww = int(self.face_ROI_width / 2)
# 判断人脸矩形框是否超出 480x640 / If the size of ROI > 480x640
if (d.right() + self.ww) > 640 or (d.bottom() + self.hh > 480) or (d.left() - self.ww < 0) or (
d.top() - self.hh < 0):
self.label_warning["text"] = "OUT OF RANGE"
self.label_warning['fg'] = 'red'
self.out_of_range_flag = True
color_rectangle = (255, 0, 0)
else:
self.out_of_range_flag = False
self.label_warning["text"] = ""
color_rectangle = (255, 255, 255)
self.current_frame = cv2.rectangle(self.current_frame,
tuple([d.left() - self.ww, d.top() - self.hh]),
tuple([d.right() + self.ww, d.bottom() + self.hh]),
color_rectangle, 2)
self.current_frame_faces_cnt = len(faces)
# Convert PIL.Image.Image to PIL.Image.PhotoImage
img_Image = Image.fromarray(self.current_frame)
img_PhotoImage = ImageTk.PhotoImage(image=img_Image)
self.label.img_tk = img_PhotoImage
self.label.configure(image=img_PhotoImage)
# Refresh frame
self.win.after(20, self.process)
def run(self):
self.pre_work_mkdir()
self.check_existing_faces()
self.GUI_info()
self.process()
self.win.mainloop()
def main():
logging.basicConfig(level=logging.INFO)
Face_Register_con = Face_Register()
Face_Register_con.run()
if __name__ == '__main__':
main()

View File

@ -1,189 +0,0 @@
# 进行人脸录入 / face register
# 录入多张人脸 / support multi-faces
# Author: coneypo
# Blog: http://www.cnblogs.com/AdaminXie
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
# Mail: coneypo@foxmail.com
# Created at 2018-05-11
# Updated at 2020-04-19
import dlib # 人脸处理的库 Dlib
import numpy as np # 数据处理的库 Numpy
import cv2 # 图像处理的库 OpenCV
import os # 读写文件
import shutil # 读写文件
import time
# Dlib 正向人脸检测器
detector = dlib.get_frontal_face_detector()
class Face_Register:
def __init__(self):
self.path_photos_from_camera = "data/data_faces_from_camera/"
self.font = cv2.FONT_ITALIC
self.existing_faces_cnt = 0 # 已录入的人脸计数器
self.ss_cnt = 0 # 录入 personX 人脸时图片计数器
self.faces_cnt = 0 # 录入人脸计数器
# 之后用来控制是否保存图像的 flag / The flag to control if save
self.save_flag = 1
# 之后用来检查是否先按 'n' 再按 's' / The flag to check if press 'n' before 's'
self.press_n_flag = 0
self.frame_time = 0
self.frame_start_time = 0
self.fps = 0
# 新建保存人脸图像文件和数据CSV文件夹 / Mkdir for saving photos and csv
def pre_work_mkdir(self):
# 新建文件夹 / make folders to save faces images and csv
if os.path.isdir(self.path_photos_from_camera):
pass
else:
os.mkdir(self.path_photos_from_camera)
# 删除之前存的人脸数据文件夹 / Delete the old data of faces
def pre_work_del_old_face_folders(self):
# 删除之前存的人脸数据文件夹, 删除 "/data_faces_from_camera/person_x/"...
folders_rd = os.listdir(self.path_photos_from_camera)
for i in range(len(folders_rd)):
shutil.rmtree(self.path_photos_from_camera+folders_rd[i])
if os.path.isfile("data/features_all.csv"):
os.remove("data/features_all.csv")
# 如果有之前录入的人脸, 在之前 person_x 的序号按照 person_x+1 开始录入 /
# If the old folders exists, start from person_x+1
def check_existing_faces_cnt(self):
if os.listdir("data/data_faces_from_camera/"):
# 获取已录入的最后一个人脸序号 / Get the num of latest person
person_list = os.listdir("data/data_faces_from_camera/")
person_num_list = []
for person in person_list:
person_num_list.append(int(person.split('_')[-1]))
self.existing_faces_cnt = max(person_num_list)
# 如果第一次存储或者没有之前录入的人脸, 按照 person_1 开始录入
# Start from person_1
else:
self.existing_faces_cnt = 0
# 获取处理之后 stream 的帧数 / Get the fps of video stream
def update_fps(self):
now = time.time()
self.frame_time = now - self.frame_start_time
self.fps = 1.0 / self.frame_time
self.frame_start_time = now
# 生成的 cv2 window 上面添加说明文字 / putText on cv2 window
def draw_note(self, img_rd):
# 添加说明 / Add some statements
cv2.putText(img_rd, "Face Register", (20, 40), self.font, 1, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(2)), (20, 100), self.font, 0.8, (0, 255, 0), 1,
cv2.LINE_AA)
cv2.putText(img_rd, "Faces: " + str(self.faces_cnt), (20, 140), self.font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
cv2.putText(img_rd, "N: Create face folder", (20, 350), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "S: Save current face", (20, 400), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Q: Quit", (20, 450), self.font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
# 获取人脸
def process(self, stream):
# 1. 新建储存人脸图像文件目录 / Uncomment if you need mkdir
# self.pre_work_mkdir()
# 2. 删除 "/data/data_faces_from_camera" 中已有人脸图像文件 / Uncomment if want to delete the old faces
self.pre_work_del_old_face_folders()
# 3. 检查 "/data/data_faces_from_camera" 中已有人脸文件
self.check_existing_faces_cnt()
while stream.isOpened():
flag, img_rd = stream.read() # Get camera video stream
kk = cv2.waitKey(1)
faces = detector(img_rd, 0) # Use dlib face detector
# 4. 按下 'n' 新建存储人脸的文件夹 / Press 'n' to create the folders for saving faces
if kk == ord('n'):
self.existing_faces_cnt += 1
current_face_dir = self.path_photos_from_camera + "person_" + str(self.existing_faces_cnt)
os.makedirs(current_face_dir)
print('\n')
print("新建的人脸文件夹 / Create folders: ", current_face_dir)
self.ss_cnt = 0 # 将人脸计数器清零 / clear the cnt of faces
self.press_n_flag = 1 # 已经按下 'n' / have pressed 'n'
# 5. 检测到人脸 / Face detected
if len(faces) != 0:
# 矩形框 / Show the HOG of faces
for k, d in enumerate(faces):
# 计算矩形框大小 / Compute the size of rectangle box
height = (d.bottom() - d.top())
width = (d.right() - d.left())
hh = int(height/2)
ww = int(width/2)
# 6. 判断人脸矩形框是否超出 480x640
if (d.right()+ww) > 640 or (d.bottom()+hh > 480) or (d.left()-ww < 0) or (d.top()-hh < 0):
cv2.putText(img_rd, "OUT OF RANGE", (20, 300), self.font, 0.8, (0, 0, 255), 1, cv2.LINE_AA)
color_rectangle = (0, 0, 255)
save_flag = 0
if kk == ord('s'):
print("请调整位置 / Please adjust your position")
else:
color_rectangle = (255, 255, 255)
save_flag = 1
cv2.rectangle(img_rd,
tuple([d.left() - ww, d.top() - hh]),
tuple([d.right() + ww, d.bottom() + hh]),
color_rectangle, 2)
# 7. 根据人脸大小生成空的图像 / Create blank image according to the shape of face detected
img_blank = np.zeros((int(height*2), width*2, 3), np.uint8)
if save_flag:
# 8. 按下 's' 保存摄像头中的人脸到本地 / Press 's' to save faces into local images
if kk == ord('s'):
# 检查有没有先按'n'新建文件夹 / Check if you have pressed 'n'
if self.press_n_flag:
self.ss_cnt += 1
for ii in range(height*2):
for jj in range(width*2):
img_blank[ii][jj] = img_rd[d.top()-hh + ii][d.left()-ww + jj]
cv2.imwrite(current_face_dir + "/img_face_" + str(self.ss_cnt) + ".jpg", img_blank)
print("写入本地 / Save into:", str(current_face_dir) + "/img_face_" + str(self.ss_cnt) + ".jpg")
else:
print("请先按 'N' 来建文件夹, 按 'S' / Please press 'N' and press 'S'")
self.faces_cnt = len(faces)
# 9. 生成的窗口添加说明文字 / Add note on cv2 window
self.draw_note(img_rd)
# 10. 按下 'q' 键退出 / Press 'q' to exit
if kk == ord('q'):
break
self.update_fps()
cv2.namedWindow("camera", 1)
cv2.imshow("camera", img_rd)
def run(self):
cap = cv2.VideoCapture(0)
cap.set(3, 640)
self.process(cap)
cap.release()
cv2.destroyAllWindows()
def main():
Face_Register_con = Face_Register()
Face_Register_con.run()
if __name__ == '__main__':
main()

View File

@ -1,89 +0,0 @@
# OpenCV 调用摄像头
# 默认调用笔记本摄像头
# Author: coneypo
# Blog: http://www.cnblogs.com/AdaminXie
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
# Mail: coneypo@foxmail.com
import cv2
cap = cv2.VideoCapture(0)
# cap.set(3, 480)
# cap.set(propId, value)
# 设置视频参数: propId - 设置的视频参数, value - 设置的参数值
"""
0. cv2.CAP_PROP_POS_MSEC Current position of the video file in milliseconds.
1. cv2.CAP_PROP_POS_FRAMES 0-based index of the frame to be decoded/captured next.
2. cv2.CAP_PROP_POS_AVI_RATIO Relative position of the video file
3. cv2.CAP_PROP_FRAME_WIDTH Width of the frames in the video stream.
4. cv2.CAP_PROP_FRAME_HEIGHT Height of the frames in the video stream.
5. cv2.CAP_PROP_FPS Frame rate.
6. cv2.CAP_PROP_FOURCC 4-character code of codec.
7. cv2.CAP_PROP_FRAME_COUNT Number of frames in the video file.
8. cv2.CAP_PROP_FORMAT Format of the Mat objects returned by retrieve() .
9. cv2.CAP_PROP_MODE Backend-specific value indicating the current capture mode.
10. cv2.CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras).
11. cv2.CAP_PROP_CONTRAST Contrast of the image (only for cameras).
12. cv2.CAP_PROP_SATURATION Saturation of the image (only for cameras).
print 14. cv2.CAP_PROP_GAIN Gain of the image (only for cameras).
15. cv2.CAP_PROP_EXPOSURE Exposure (only for cameras).
16. cv2.CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should be converted to RGB.
17. cv2.CAP_PROP_WHITE_BALANCE Currently unsupported
18. cv2.CAP_PROP_RECTIFICATION Rectification flag for stereo cameras (note: only supported by DC1394 v 2.x backend currently)
"""
# The default shape of camera will be 640x480 in Windows or Ubuntu
# So we will not set "cap.set" here, it doesn't work
# print(cv2.CAP_PROP_FRAME_WIDTH)
# print(cv2.CAP_PROP_FRAME_HEIGHT)
cap.set(3, 640)
# cap.isOpened() 返回 true/false, 检查摄像头初始化是否成功
print(cap.isOpened())
# cap.read()
"""
返回两个值
先返回一个布尔值, 如果视频读取正确, 则为 True, 如果错误, 则为 False;
也可用来判断是否到视频末尾;
再返回一个值, 为每一帧的图像, 该值是一个三维矩阵;
通用接收方法为:
ret,frame = cap.read();
ret: 布尔值;
frame: 图像的三维矩阵;
这样 ret 存储布尔值, frame 存储图像;
若使用一个变量来接收两个值, 如:
frame = cap.read()
则 frame 为一个元组, 原来使用 frame 处需更改为 frame[1]
"""
while cap.isOpened():
ret_flag, img_camera = cap.read()
print("height: ", img_camera.shape[0])
print("width: ", img_camera.shape[1])
print('\n')
cv2.imshow("camera", img_camera)
# 每帧数据延时 1ms, 延时为0, 读取的是静态帧
k = cv2.waitKey(1)
# 按下 's' 保存截图
if k == ord('s'):
cv2.imwrite("test.jpg", img_camera)
# 按下 'q' 退出
if k == ord('q'):
break
# 释放所有摄像头
cap.release()
# 删除建立的所有窗口
cv2.destroyAllWindows()

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.3 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.5 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.3 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.5 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.3 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.4 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 324 KiB

6
requirements.txt Executable file → Normal file
View File

@ -1,3 +1,5 @@
dlib==19.17.0
numpy==1.15.1
scikit-image==0.14.0
numpy==1.22.0
scikit-image==0.18.3
pandas==1.3.4
opencv-python==4.5.4.58