Adds Frequency unit type.

Bug: webrtc:10674
Change-Id: Ic0ddca46d8522d994bbeba072a73836b506fe40f
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/138261
Commit-Queue: Sebastian Jansson <srte@webrtc.org>
Reviewed-by: Niels Moller <nisse@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#28192}
This commit is contained in:
Sebastian Jansson
2019-06-07 11:05:31 +02:00
committed by Commit Bot
parent d3a4ebe332
commit 26b5e35276
9 changed files with 371 additions and 10 deletions

View File

@ -17,6 +17,7 @@ rtc_source_set("data_rate") {
deps = [
":data_size",
":frequency",
":time_delta",
"..:array_view",
"../../rtc_base:checks",
@ -55,6 +56,22 @@ rtc_source_set("time_delta") {
]
}
rtc_source_set("frequency") {
visibility = [ "*" ]
sources = [
"frequency.cc",
"frequency.h",
]
deps = [
":time_delta",
"..:array_view",
"../../rtc_base:checks",
"../../rtc_base:stringutils",
"../../rtc_base/units:unit_base",
]
}
rtc_source_set("timestamp") {
visibility = [ "*" ]
sources = [
@ -77,12 +94,14 @@ if (rtc_include_tests) {
sources = [
"data_rate_unittest.cc",
"data_size_unittest.cc",
"frequency_unittest.cc",
"time_delta_unittest.cc",
"timestamp_unittest.cc",
]
deps = [
":data_rate",
":data_size",
":frequency",
":time_delta",
":timestamp",
"../../rtc_base:logging",

View File

@ -20,21 +20,12 @@
#include <type_traits>
#include "api/units/data_size.h"
#include "api/units/frequency.h"
#include "api/units/time_delta.h"
#include "rtc_base/checks.h"
#include "rtc_base/units/unit_base.h"
namespace webrtc {
namespace data_rate_impl {
inline int64_t Microbits(const DataSize& size) {
constexpr int64_t kMaxBeforeConversion =
std::numeric_limits<int64_t>::max() / 8000000;
RTC_DCHECK_LE(size.bytes(), kMaxBeforeConversion)
<< "size is too large to be expressed in microbytes";
return size.bytes() * 8000000;
}
} // namespace data_rate_impl
// DataRate is a class that represents a given data rate. This can be used to
// represent bandwidth, encoding bitrate, etc. The internal storage is bits per
// second (bps).
@ -92,6 +83,24 @@ class DataRate final : public rtc_units_impl::RelativeUnit<DataRate> {
static constexpr bool one_sided = true;
};
namespace data_rate_impl {
inline int64_t Microbits(const DataSize& size) {
constexpr int64_t kMaxBeforeConversion =
std::numeric_limits<int64_t>::max() / 8000000;
RTC_DCHECK_LE(size.bytes(), kMaxBeforeConversion)
<< "size is too large to be expressed in microbits";
return size.bytes() * 8000000;
}
inline int64_t MillibytePerSec(const DataRate& size) {
constexpr int64_t kMaxBeforeConversion =
std::numeric_limits<int64_t>::max() / (1000 / 8);
RTC_DCHECK_LE(size.bps(), kMaxBeforeConversion)
<< "rate is too large to be expressed in microbytes per second";
return size.bps() * (1000 / 8);
}
} // namespace data_rate_impl
inline DataRate operator/(const DataSize size, const TimeDelta duration) {
return DataRate::bps(data_rate_impl::Microbits(size) / duration.us());
}
@ -106,6 +115,28 @@ inline DataSize operator*(const TimeDelta duration, const DataRate rate) {
return rate * duration;
}
inline DataSize operator/(const DataRate rate, const Frequency frequency) {
int64_t millihertz = frequency.millihertz<int64_t>();
// Note that the value is truncated here reather than rounded, potentially
// introducing an error of .5 bytes if rounding were expected.
return DataSize::bytes(data_rate_impl::MillibytePerSec(rate) / millihertz);
}
inline Frequency operator/(const DataRate rate, const DataSize size) {
return Frequency::millihertz(data_rate_impl::MillibytePerSec(rate) /
size.bytes());
}
inline DataRate operator*(const DataSize size, const Frequency frequency) {
int64_t millihertz = frequency.millihertz<int64_t>();
int64_t kMaxBeforeConversion =
std::numeric_limits<int64_t>::max() / 8 / millihertz;
RTC_DCHECK_LE(size.bytes(), kMaxBeforeConversion);
int64_t millibits_per_second = size.bytes() * 8 * millihertz;
return DataRate::bps((millibits_per_second + 500) / 1000);
}
inline DataRate operator*(const Frequency frequency, const DataSize size) {
return size * frequency;
}
std::string ToString(DataRate value);
inline std::string ToLogString(DataRate value) {
return ToString(value);

View File

@ -161,6 +161,19 @@ TEST(UnitConversionTest, DataRateAndDataSizeAndTimeDelta) {
EXPECT_EQ((size_c / rate_b).seconds(), kBytes * 8 / kBitsPerSecond);
}
TEST(UnitConversionTest, DataRateAndDataSizeAndFrequency) {
const int64_t kHertz = 30;
const int64_t kBitsPerSecond = 96000;
const int64_t kBytes = 1200;
const Frequency freq_a = Frequency::hertz(kHertz);
const DataRate rate_b = DataRate::bps(kBitsPerSecond);
const DataSize size_c = DataSize::bytes(kBytes);
EXPECT_EQ((freq_a * size_c).bps(), kHertz * kBytes * 8);
EXPECT_EQ((size_c * freq_a).bps(), kHertz * kBytes * 8);
EXPECT_EQ((rate_b / size_c).hertz<int64_t>(), kBitsPerSecond / kBytes / 8);
EXPECT_EQ((rate_b / freq_a).bytes(), kBitsPerSecond / kHertz / 8);
}
TEST(UnitConversionTest, DivisionFailsOnLargeSize) {
// Note that the failure is expected since the current implementation is
// implementated in a way that does not support division of large sizes. If

28
api/units/frequency.cc Normal file
View File

@ -0,0 +1,28 @@
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "api/units/frequency.h"
#include "rtc_base/strings/string_builder.h"
namespace webrtc {
std::string ToString(Frequency value) {
char buf[64];
rtc::SimpleStringBuilder sb(buf);
if (value.IsPlusInfinity()) {
sb << "+inf Hz";
} else if (value.IsMinusInfinity()) {
sb << "-inf Hz";
} else if (value.millihertz<int64_t>() % 1000 != 0) {
sb.AppendFormat("%.3f Hz", value.hertz<double>());
} else {
sb << value.hertz<int64_t>() << " Hz";
}
return sb.str();
}
} // namespace webrtc

89
api/units/frequency.h Normal file
View File

@ -0,0 +1,89 @@
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef API_UNITS_FREQUENCY_H_
#define API_UNITS_FREQUENCY_H_
#ifdef UNIT_TEST
#include <ostream> // no-presubmit-check TODO(webrtc:8982)
#endif // UNIT_TEST
#include <cstdlib>
#include <limits>
#include <string>
#include <type_traits>
#include "api/units/time_delta.h"
#include "rtc_base/units/unit_base.h"
namespace webrtc {
class Frequency final : public rtc_units_impl::RelativeUnit<Frequency> {
public:
Frequency() = delete;
template <int64_t hertz>
static constexpr Frequency Hertz() {
return FromStaticFraction<hertz, 1000>();
}
template <typename T>
static Frequency hertz(T hertz) {
static_assert(std::is_arithmetic<T>::value, "");
return FromFraction<1000>(hertz);
}
template <typename T>
static Frequency millihertz(T hertz) {
static_assert(std::is_arithmetic<T>::value, "");
return FromValue(hertz);
}
template <typename T = int64_t>
T hertz() const {
return ToFraction<1000, T>();
}
template <typename T = int64_t>
T millihertz() const {
return ToValue<T>();
}
private:
friend class rtc_units_impl::UnitBase<Frequency>;
using RelativeUnit::RelativeUnit;
static constexpr bool one_sided = true;
};
inline Frequency operator/(int64_t nominator, const TimeDelta& interval) {
constexpr int64_t kKiloPerMicro = 1000 * 1000000;
RTC_DCHECK_LE(nominator, std::numeric_limits<int64_t>::max() / kKiloPerMicro);
RTC_CHECK(interval.IsFinite());
RTC_CHECK(!interval.IsZero());
return Frequency::millihertz(nominator * kKiloPerMicro / interval.us());
}
inline TimeDelta operator/(int64_t nominator, const Frequency& frequency) {
constexpr int64_t kMegaPerMilli = 1000000 * 1000;
RTC_DCHECK_LE(nominator, std::numeric_limits<int64_t>::max() / kMegaPerMilli);
RTC_CHECK(frequency.IsFinite());
RTC_CHECK(!frequency.IsZero());
return TimeDelta::us(nominator * kMegaPerMilli / frequency.millihertz());
}
std::string ToString(Frequency value);
inline std::string ToLogString(Frequency value) {
return ToString(value);
}
#ifdef UNIT_TEST
inline std::ostream& operator<<( // no-presubmit-check TODO(webrtc:8982)
std::ostream& stream, // no-presubmit-check TODO(webrtc:8982)
Frequency value) {
return stream << ToString(value);
}
#endif // UNIT_TEST
} // namespace webrtc
#endif // API_UNITS_FREQUENCY_H_

View File

@ -0,0 +1,159 @@
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "api/units/frequency.h"
#include <limits>
#include "test/gtest.h"
namespace webrtc {
namespace test {
TEST(FrequencyTest, ConstExpr) {
constexpr Frequency kFrequencyZero = Frequency::Zero();
constexpr Frequency kFrequencyPlusInf = Frequency::PlusInfinity();
constexpr Frequency kFrequencyMinusInf = Frequency::MinusInfinity();
static_assert(kFrequencyZero.IsZero(), "");
static_assert(kFrequencyPlusInf.IsPlusInfinity(), "");
static_assert(kFrequencyMinusInf.IsMinusInfinity(), "");
static_assert(kFrequencyPlusInf > kFrequencyZero, "");
}
TEST(FrequencyTest, GetBackSameValues) {
const int64_t kValue = 31;
EXPECT_EQ(Frequency::hertz(kValue).hertz<int64_t>(), kValue);
EXPECT_EQ(Frequency::Zero().hertz<int64_t>(), 0);
}
TEST(FrequencyTest, GetDifferentPrefix) {
const int64_t kValue = 30000;
EXPECT_EQ(Frequency::millihertz(kValue).hertz<int64_t>(), kValue / 1000);
EXPECT_EQ(Frequency::hertz(kValue).millihertz(), kValue * 1000);
}
TEST(FrequencyTest, IdentityChecks) {
const int64_t kValue = 31;
EXPECT_TRUE(Frequency::Zero().IsZero());
EXPECT_FALSE(Frequency::hertz(kValue).IsZero());
EXPECT_TRUE(Frequency::PlusInfinity().IsInfinite());
EXPECT_TRUE(Frequency::MinusInfinity().IsInfinite());
EXPECT_FALSE(Frequency::Zero().IsInfinite());
EXPECT_FALSE(Frequency::hertz(kValue).IsInfinite());
EXPECT_FALSE(Frequency::PlusInfinity().IsFinite());
EXPECT_FALSE(Frequency::MinusInfinity().IsFinite());
EXPECT_TRUE(Frequency::hertz(kValue).IsFinite());
EXPECT_TRUE(Frequency::Zero().IsFinite());
EXPECT_TRUE(Frequency::PlusInfinity().IsPlusInfinity());
EXPECT_FALSE(Frequency::MinusInfinity().IsPlusInfinity());
EXPECT_TRUE(Frequency::MinusInfinity().IsMinusInfinity());
EXPECT_FALSE(Frequency::PlusInfinity().IsMinusInfinity());
}
TEST(FrequencyTest, ComparisonOperators) {
const int64_t kSmall = 42;
const int64_t kLarge = 45;
const Frequency small = Frequency::hertz(kSmall);
const Frequency large = Frequency::hertz(kLarge);
EXPECT_EQ(Frequency::Zero(), Frequency::hertz(0));
EXPECT_EQ(Frequency::PlusInfinity(), Frequency::PlusInfinity());
EXPECT_EQ(small, Frequency::hertz(kSmall));
EXPECT_LE(small, Frequency::hertz(kSmall));
EXPECT_GE(small, Frequency::hertz(kSmall));
EXPECT_NE(small, Frequency::hertz(kLarge));
EXPECT_LE(small, Frequency::hertz(kLarge));
EXPECT_LT(small, Frequency::hertz(kLarge));
EXPECT_GE(large, Frequency::hertz(kSmall));
EXPECT_GT(large, Frequency::hertz(kSmall));
EXPECT_LT(Frequency::Zero(), small);
EXPECT_GT(Frequency::PlusInfinity(), large);
EXPECT_LT(Frequency::MinusInfinity(), Frequency::Zero());
}
TEST(FrequencyTest, Clamping) {
const Frequency upper = Frequency::hertz(800);
const Frequency lower = Frequency::hertz(100);
const Frequency under = Frequency::hertz(100);
const Frequency inside = Frequency::hertz(500);
const Frequency over = Frequency::hertz(1000);
EXPECT_EQ(under.Clamped(lower, upper), lower);
EXPECT_EQ(inside.Clamped(lower, upper), inside);
EXPECT_EQ(over.Clamped(lower, upper), upper);
Frequency mutable_frequency = lower;
mutable_frequency.Clamp(lower, upper);
EXPECT_EQ(mutable_frequency, lower);
mutable_frequency = inside;
mutable_frequency.Clamp(lower, upper);
EXPECT_EQ(mutable_frequency, inside);
mutable_frequency = over;
mutable_frequency.Clamp(lower, upper);
EXPECT_EQ(mutable_frequency, upper);
}
TEST(FrequencyTest, MathOperations) {
const int64_t kValueA = 457;
const int64_t kValueB = 260;
const Frequency frequency_a = Frequency::hertz(kValueA);
const Frequency frequency_b = Frequency::hertz(kValueB);
EXPECT_EQ((frequency_a + frequency_b).hertz<int64_t>(), kValueA + kValueB);
EXPECT_EQ((frequency_a - frequency_b).hertz<int64_t>(), kValueA - kValueB);
EXPECT_EQ((Frequency::hertz(kValueA) * kValueB).hertz<int64_t>(),
kValueA * kValueB);
EXPECT_EQ((frequency_b / 10).hertz<int64_t>(), kValueB / 10);
EXPECT_EQ(frequency_b / frequency_a, static_cast<double>(kValueB) / kValueA);
Frequency mutable_frequency = Frequency::hertz(kValueA);
mutable_frequency += Frequency::hertz(kValueB);
EXPECT_EQ(mutable_frequency, Frequency::hertz(kValueA + kValueB));
mutable_frequency -= Frequency::hertz(kValueB);
EXPECT_EQ(mutable_frequency, Frequency::hertz(kValueA));
}
TEST(FrequencyTest, Rounding) {
const Frequency freq_high = Frequency::hertz(23.976);
EXPECT_EQ(freq_high.hertz(), 24);
EXPECT_EQ(freq_high.RoundDownTo(Frequency::hertz(1)), Frequency::hertz(23));
EXPECT_EQ(freq_high.RoundTo(Frequency::hertz(1)), Frequency::hertz(24));
EXPECT_EQ(freq_high.RoundUpTo(Frequency::hertz(1)), Frequency::hertz(24));
const Frequency freq_low = Frequency::hertz(23.4);
EXPECT_EQ(freq_low.hertz(), 23);
EXPECT_EQ(freq_low.RoundDownTo(Frequency::hertz(1)), Frequency::hertz(23));
EXPECT_EQ(freq_low.RoundTo(Frequency::hertz(1)), Frequency::hertz(23));
EXPECT_EQ(freq_low.RoundUpTo(Frequency::hertz(1)), Frequency::hertz(24));
}
TEST(FrequencyTest, InfinityOperations) {
const double kValue = 267;
const Frequency finite = Frequency::hertz(kValue);
EXPECT_TRUE((Frequency::PlusInfinity() + finite).IsPlusInfinity());
EXPECT_TRUE((Frequency::PlusInfinity() - finite).IsPlusInfinity());
EXPECT_TRUE((finite + Frequency::PlusInfinity()).IsPlusInfinity());
EXPECT_TRUE((finite - Frequency::MinusInfinity()).IsPlusInfinity());
EXPECT_TRUE((Frequency::MinusInfinity() + finite).IsMinusInfinity());
EXPECT_TRUE((Frequency::MinusInfinity() - finite).IsMinusInfinity());
EXPECT_TRUE((finite + Frequency::MinusInfinity()).IsMinusInfinity());
EXPECT_TRUE((finite - Frequency::PlusInfinity()).IsMinusInfinity());
}
TEST(UnitConversionTest, TimeDeltaAndFrequency) {
EXPECT_EQ(1 / Frequency::hertz(50), TimeDelta::ms(20));
EXPECT_EQ(1 / TimeDelta::ms(20), Frequency::hertz(50));
}
} // namespace test
} // namespace webrtc

View File

@ -32,4 +32,5 @@ std::string ToString(TimeDelta value) {
}
return sb.str();
}
} // namespace webrtc

View File

@ -22,6 +22,7 @@
#include "rtc_base/units/unit_base.h"
namespace webrtc {
// TimeDelta represents the difference between two timestamps. Commonly this can
// be a duration. However since two Timestamps are not guaranteed to have the
// same epoch (they might come from different computers, making exact

View File

@ -67,6 +67,26 @@ class UnitBase {
constexpr bool operator<(const Unit_T& other) const {
return value_ < other.value_;
}
Unit_T RoundTo(const Unit_T& resolution) const {
RTC_DCHECK(IsFinite());
RTC_DCHECK(resolution.IsFinite());
RTC_DCHECK_GT(resolution.value_, 0);
return Unit_T((value_ + resolution.value_ / 2) / resolution.value_) *
resolution.value_;
}
Unit_T RoundUpTo(const Unit_T& resolution) const {
RTC_DCHECK(IsFinite());
RTC_DCHECK(resolution.IsFinite());
RTC_DCHECK_GT(resolution.value_, 0);
return Unit_T((value_ + resolution.value_ - 1) / resolution.value_) *
resolution.value_;
}
Unit_T RoundDownTo(const Unit_T& resolution) const {
RTC_DCHECK(IsFinite());
RTC_DCHECK(resolution.IsFinite());
RTC_DCHECK_GT(resolution.value_, 0);
return Unit_T(value_ / resolution.value_) * resolution.value_;
}
protected:
template <int64_t value>