Lint fix for webrtc/modules/video_coding PART 3!

Trying to submit all changes at once proved impossible since there were
too many changes in too many files. The changes to PRESUBMIT.py
will be uploaded in the last CL.
(original CL: https://codereview.webrtc.org/1528503003/)

BUG=webrtc:5309
TBR=mflodman@webrtc.org

Review URL: https://codereview.webrtc.org/1540243002

Cr-Commit-Position: refs/heads/master@{#11105}
This commit is contained in:
philipel
2015-12-21 08:23:20 -08:00
committed by Commit bot
parent f5b1abf5b0
commit 5908c71128
29 changed files with 662 additions and 767 deletions

View File

@ -22,6 +22,7 @@ CPPLINT_DIRS = [
'webrtc/examples',
'webrtc/modules/remote_bitrate_estimator',
'webrtc/modules/rtp_rtcp',
'webrtc/modules/video_coding',
'webrtc/modules/video_processing',
'webrtc/sound',
'webrtc/tools',

View File

@ -11,6 +11,9 @@
#ifndef WEBRTC_MODULES_VIDEO_CODING_TEST_RECEIVER_TESTS_H_
#define WEBRTC_MODULES_VIDEO_CODING_TEST_RECEIVER_TESTS_H_
#include <stdio.h>
#include <string>
#include "webrtc/common_types.h"
#include "webrtc/modules/include/module_common_types.h"
#include "webrtc/modules/rtp_rtcp/include/rtp_rtcp.h"
@ -19,12 +22,9 @@
#include "webrtc/modules/video_coding/test/video_source.h"
#include "webrtc/typedefs.h"
#include <stdio.h>
#include <string>
class RtpDataCallback : public webrtc::NullRtpData {
public:
RtpDataCallback(webrtc::VideoCodingModule* vcm) : vcm_(vcm) {}
explicit RtpDataCallback(webrtc::VideoCodingModule* vcm) : vcm_(vcm) {}
virtual ~RtpDataCallback() {}
int32_t OnReceivedPayloadData(
@ -40,4 +40,4 @@ class RtpDataCallback : public webrtc::NullRtpData {
int RtpPlay(const CmdArgs& args);
#endif // WEBRTC_MODULES_VIDEO_CODING_TEST_RECEIVER_TESTS_H_
#endif // WEBRTC_MODULES_VIDEO_CODING_TEST_RECEIVER_TESTS_H_

View File

@ -26,9 +26,9 @@
#include "webrtc/test/rtp_file_reader.h"
#if 1
# define DEBUG_LOG1(text, arg)
#define DEBUG_LOG1(text, arg)
#else
# define DEBUG_LOG1(text, arg) (printf(text "\n", arg))
#define DEBUG_LOG1(text, arg) (printf(text "\n", arg))
#endif
namespace webrtc {
@ -41,7 +41,9 @@ enum {
class RawRtpPacket {
public:
RawRtpPacket(const uint8_t* data, size_t length, uint32_t ssrc,
RawRtpPacket(const uint8_t* data,
size_t length,
uint32_t ssrc,
uint16_t seq_num)
: data_(new uint8_t[length]),
length_(length),
@ -140,7 +142,7 @@ class LostPackets {
CriticalSectionScoped cs(crit_sect_.get());
int count = 0;
for (ConstRtpPacketIterator it = packets_.begin(); it != packets_.end();
++it) {
++it) {
if ((*it)->resend_time_ms() >= 0) {
count++;
}
@ -164,7 +166,7 @@ class LostPackets {
printf("Packets still lost: %zd\n", packets_.size());
printf("Sequence numbers:\n");
for (ConstRtpPacketIterator it = packets_.begin(); it != packets_.end();
++it) {
++it) {
printf("%u, ", (*it)->seq_num());
}
printf("\n");
@ -231,17 +233,14 @@ class SsrcHandlers {
kDefaultTransmissionTimeOffsetExtensionId);
for (PayloadTypesIterator it = payload_types_.begin();
it != payload_types_.end(); ++it) {
it != payload_types_.end(); ++it) {
VideoCodec codec;
memset(&codec, 0, sizeof(codec));
strncpy(codec.plName, it->name().c_str(), sizeof(codec.plName)-1);
strncpy(codec.plName, it->name().c_str(), sizeof(codec.plName) - 1);
codec.plType = it->payload_type();
codec.codecType = it->codec_type();
if (handler->rtp_module_->RegisterReceivePayload(codec.plName,
codec.plType,
90000,
0,
codec.maxBitrate) < 0) {
if (handler->rtp_module_->RegisterReceivePayload(
codec.plName, codec.plType, 90000, 0, codec.maxBitrate) < 0) {
return -1;
}
}
@ -267,7 +266,8 @@ class SsrcHandlers {
private:
class Handler : public RtpStreamInterface {
public:
Handler(uint32_t ssrc, const PayloadTypes& payload_types,
Handler(uint32_t ssrc,
const PayloadTypes& payload_types,
LostPackets* lost_packets)
: rtp_header_parser_(RtpHeaderParser::Create()),
rtp_payload_registry_(new RTPPayloadRegistry(
@ -290,9 +290,7 @@ class SsrcHandlers {
}
virtual uint32_t ssrc() const { return ssrc_; }
virtual const PayloadTypes& payload_types() const {
return payload_types_;
}
virtual const PayloadTypes& payload_types() const { return payload_types_; }
rtc::scoped_ptr<RtpHeaderParser> rtp_header_parser_;
rtc::scoped_ptr<RTPPayloadRegistry> rtp_payload_registry_;
@ -351,8 +349,7 @@ class RtpPlayerImpl : public RtpPlayerInterface {
virtual int NextPacket(int64_t time_now) {
// Send any packets ready to be resent.
for (RawRtpPacket* packet = lost_packets_.NextPacketToResend(time_now);
packet != NULL;
packet = lost_packets_.NextPacketToResend(time_now)) {
packet != NULL; packet = lost_packets_.NextPacketToResend(time_now)) {
int ret = SendPacket(packet->data(), packet->length());
if (ret > 0) {
printf("Resend: %08x:%u\n", packet->ssrc(), packet->seq_num());
@ -392,8 +389,7 @@ class RtpPlayerImpl : public RtpPlayerInterface {
if (!packet_source_->NextPacket(&next_packet_)) {
end_of_file_ = true;
return 0;
}
else if (next_packet_.length == 0) {
} else if (next_packet_.length == 0) {
return 0;
}
}
@ -406,7 +402,7 @@ class RtpPlayerImpl : public RtpPlayerInterface {
virtual uint32_t TimeUntilNextPacket() const {
int64_t time_left = (next_rtp_time_ - first_packet_rtp_time_) -
(clock_->TimeInMilliseconds() - first_packet_time_ms_);
(clock_->TimeInMilliseconds() - first_packet_time_ms_);
if (time_left < 0) {
return 0;
}
@ -438,7 +434,7 @@ class RtpPlayerImpl : public RtpPlayerInterface {
if (no_loss_startup_ > 0) {
no_loss_startup_--;
} else if ((rand() + 1.0)/(RAND_MAX + 1.0) < loss_rate_) {
} else if ((rand() + 1.0) / (RAND_MAX + 1.0) < loss_rate_) { // NOLINT
uint16_t seq_num = header.sequenceNumber;
lost_packets_.AddPacket(new RawRtpPacket(data, length, ssrc, seq_num));
DEBUG_LOG1("Dropped packet: %d!", header.header.sequenceNumber);
@ -470,9 +466,12 @@ class RtpPlayerImpl : public RtpPlayerInterface {
};
RtpPlayerInterface* Create(const std::string& input_filename,
PayloadSinkFactoryInterface* payload_sink_factory, Clock* clock,
const PayloadTypes& payload_types, float loss_rate, int64_t rtt_ms,
bool reordering) {
PayloadSinkFactoryInterface* payload_sink_factory,
Clock* clock,
const PayloadTypes& payload_types,
float loss_rate,
int64_t rtt_ms,
bool reordering) {
rtc::scoped_ptr<test::RtpFileReader> packet_source(
test::RtpFileReader::Create(test::RtpFileReader::kRtpDump,
input_filename));

View File

@ -24,12 +24,12 @@ namespace rtpplayer {
class PayloadCodecTuple {
public:
PayloadCodecTuple(uint8_t payload_type, const std::string& codec_name,
PayloadCodecTuple(uint8_t payload_type,
const std::string& codec_name,
VideoCodecType codec_type)
: name_(codec_name),
payload_type_(payload_type),
codec_type_(codec_type) {
}
codec_type_(codec_type) {}
const std::string& name() const { return name_; }
uint8_t payload_type() const { return payload_type_; }
@ -87,11 +87,14 @@ class RtpPlayerInterface {
};
RtpPlayerInterface* Create(const std::string& inputFilename,
PayloadSinkFactoryInterface* payloadSinkFactory, Clock* clock,
const PayloadTypes& payload_types, float lossRate, int64_t rttMs,
bool reordering);
PayloadSinkFactoryInterface* payloadSinkFactory,
Clock* clock,
const PayloadTypes& payload_types,
float lossRate,
int64_t rttMs,
bool reordering);
} // namespace rtpplayer
} // namespace webrtc
#endif // WEBRTC_MODULES_VIDEO_CODING_TEST_RTP_PLAYER_H_
#endif // WEBRTC_MODULES_VIDEO_CODING_TEST_RTP_PLAYER_H_

View File

@ -22,8 +22,7 @@
namespace webrtc {
StreamGenerator::StreamGenerator(uint16_t start_seq_num, int64_t current_time)
: packets_(), sequence_number_(start_seq_num), start_time_(current_time) {
}
: packets_(), sequence_number_(start_seq_num), start_time_(current_time) {}
void StreamGenerator::Init(uint16_t start_seq_num, int64_t current_time) {
packets_.clear();
@ -41,8 +40,8 @@ void StreamGenerator::GenerateFrame(FrameType type,
const int packet_size =
(kFrameSize + num_media_packets / 2) / num_media_packets;
bool marker_bit = (i == num_media_packets - 1);
packets_.push_back(GeneratePacket(
sequence_number_, timestamp, packet_size, (i == 0), marker_bit, type));
packets_.push_back(GeneratePacket(sequence_number_, timestamp, packet_size,
(i == 0), marker_bit, type));
++sequence_number_;
}
for (int i = 0; i < num_empty_packets; ++i) {
@ -104,7 +103,9 @@ bool StreamGenerator::NextPacket(VCMPacket* packet) {
return true;
}
void StreamGenerator::DropLastPacket() { packets_.pop_back(); }
void StreamGenerator::DropLastPacket() {
packets_.pop_back();
}
uint16_t StreamGenerator::NextSequenceNumber() const {
if (packets_.empty())
@ -112,7 +113,9 @@ uint16_t StreamGenerator::NextSequenceNumber() const {
return packets_.front().seqNum;
}
int StreamGenerator::PacketsRemaining() const { return packets_.size(); }
int StreamGenerator::PacketsRemaining() const {
return packets_.size();
}
std::list<VCMPacket>::iterator StreamGenerator::GetPacketIterator(int index) {
std::list<VCMPacket>::iterator it = packets_.begin();

View File

@ -28,12 +28,12 @@ CmdArgs::CmdArgs()
rtt(0),
inputFile(webrtc::test::ProjectRootPath() + "/resources/foreman_cif.yuv"),
outputFile(webrtc::test::OutputPath() +
"video_coding_test_output_352x288.yuv") {
}
"video_coding_test_output_352x288.yuv") {}
namespace {
void SplitFilename(const std::string& filename, std::string* basename,
void SplitFilename(const std::string& filename,
std::string* basename,
std::string* extension) {
assert(basename);
assert(extension);
@ -41,7 +41,7 @@ void SplitFilename(const std::string& filename, std::string* basename,
std::string::size_type idx;
idx = filename.rfind('.');
if(idx != std::string::npos) {
if (idx != std::string::npos) {
*basename = filename.substr(0, idx);
*extension = filename.substr(idx + 1);
} else {
@ -50,21 +50,24 @@ void SplitFilename(const std::string& filename, std::string* basename,
}
}
std::string AppendWidthHeightCount(const std::string& filename, int width,
int height, int count) {
std::string AppendWidthHeightCount(const std::string& filename,
int width,
int height,
int count) {
std::string basename;
std::string extension;
SplitFilename(filename, &basename, &extension);
std::stringstream ss;
ss << basename << "_" << count << "." << width << "_" << height << "." <<
extension;
ss << basename << "_" << count << "." << width << "_" << height << "."
<< extension;
return ss.str();
}
} // namespace
FileOutputFrameReceiver::FileOutputFrameReceiver(
const std::string& base_out_filename, uint32_t ssrc)
const std::string& base_out_filename,
uint32_t ssrc)
: out_filename_(),
out_file_(NULL),
timing_file_(NULL),
@ -80,8 +83,8 @@ FileOutputFrameReceiver::FileOutputFrameReceiver(
SplitFilename(base_out_filename, &basename, &extension);
}
std::stringstream ss;
ss << basename << "_" << std::hex << std::setw(8) << std::setfill('0') <<
ssrc << "." << extension;
ss << basename << "_" << std::hex << std::setw(8) << std::setfill('0') << ssrc
<< "." << extension;
out_filename_ = ss.str();
}
@ -113,8 +116,8 @@ int32_t FileOutputFrameReceiver::FrameToRender(
printf("New size: %dx%d\n", video_frame.width(), video_frame.height());
width_ = video_frame.width();
height_ = video_frame.height();
std::string filename_with_width_height = AppendWidthHeightCount(
out_filename_, width_, height_, count_);
std::string filename_with_width_height =
AppendWidthHeightCount(out_filename_, width_, height_, count_);
++count_;
out_file_ = fopen(filename_with_width_height.c_str(), "wb");
if (out_file_ == NULL) {
@ -122,7 +125,7 @@ int32_t FileOutputFrameReceiver::FrameToRender(
}
}
fprintf(timing_file_, "%u, %u\n", video_frame.timestamp(),
webrtc::MaskWord64ToUWord32(video_frame.render_time_ms()));
webrtc::MaskWord64ToUWord32(video_frame.render_time_ms()));
if (PrintVideoFrame(video_frame, out_file_) < 0) {
return -1;
}
@ -130,7 +133,7 @@ int32_t FileOutputFrameReceiver::FrameToRender(
}
webrtc::RtpVideoCodecTypes ConvertCodecType(const char* plname) {
if (strncmp(plname,"VP8" , 3) == 0) {
if (strncmp(plname, "VP8", 3) == 0) {
return webrtc::kRtpVideoVp8;
} else {
// Default value.

View File

@ -33,11 +33,13 @@ class NullEvent : public webrtc::EventWrapper {
virtual bool Reset() { return true; }
virtual webrtc::EventTypeWrapper Wait(unsigned long max_time) {
virtual webrtc::EventTypeWrapper Wait(unsigned long max_time) { // NOLINT
return webrtc::kEventTimeout;
}
virtual bool StartTimer(bool periodic, unsigned long time) { return true; }
virtual bool StartTimer(bool periodic, unsigned long time) { // NOLINT
return true;
}
virtual bool StopTimer() { return true; }
};
@ -46,9 +48,7 @@ class NullEventFactory : public webrtc::EventFactory {
public:
virtual ~NullEventFactory() {}
virtual webrtc::EventWrapper* CreateEvent() {
return new NullEvent;
}
virtual webrtc::EventWrapper* CreateEvent() { return new NullEvent; }
};
class FileOutputFrameReceiver : public webrtc::VCMReceiveCallback {
@ -57,7 +57,7 @@ class FileOutputFrameReceiver : public webrtc::VCMReceiveCallback {
virtual ~FileOutputFrameReceiver();
// VCMReceiveCallback
virtual int32_t FrameToRender(webrtc::VideoFrame& video_frame);
virtual int32_t FrameToRender(webrtc::VideoFrame& video_frame); // NOLINT
private:
std::string out_filename_;

View File

@ -8,7 +8,6 @@
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdlib.h>
#include <string.h>
@ -21,12 +20,15 @@ DEFINE_string(codec, "VP8", "Codec to use (VP8 or I420).");
DEFINE_int32(width, 352, "Width in pixels of the frames in the input file.");
DEFINE_int32(height, 288, "Height in pixels of the frames in the input file.");
DEFINE_int32(rtt, 0, "RTT (round-trip time), in milliseconds.");
DEFINE_string(input_filename, webrtc::test::ProjectRootPath() +
"/resources/foreman_cif.yuv", "Input file.");
DEFINE_string(output_filename, webrtc::test::OutputPath() +
"video_coding_test_output_352x288.yuv", "Output file.");
DEFINE_string(input_filename,
webrtc::test::ProjectRootPath() + "/resources/foreman_cif.yuv",
"Input file.");
DEFINE_string(output_filename,
webrtc::test::OutputPath() +
"video_coding_test_output_352x288.yuv",
"Output file.");
using namespace webrtc;
namespace webrtc {
/*
* Build with EVENT_DEBUG defined
@ -36,36 +38,37 @@ using namespace webrtc;
int vcmMacrosTests = 0;
int vcmMacrosErrors = 0;
int ParseArguments(CmdArgs& args) {
args.width = FLAGS_width;
args.height = FLAGS_height;
if (args.width < 1 || args.height < 1) {
int ParseArguments(CmdArgs* args) {
args->width = FLAGS_width;
args->height = FLAGS_height;
if (args->width < 1 || args->height < 1) {
return -1;
}
args.codecName = FLAGS_codec;
if (args.codecName == "VP8") {
args.codecType = kVideoCodecVP8;
} else if (args.codecName == "VP9") {
args.codecType = kVideoCodecVP9;
} else if (args.codecName == "I420") {
args.codecType = kVideoCodecI420;
args->codecName = FLAGS_codec;
if (args->codecName == "VP8") {
args->codecType = kVideoCodecVP8;
} else if (args->codecName == "VP9") {
args->codecType = kVideoCodecVP9;
} else if (args->codecName == "I420") {
args->codecType = kVideoCodecI420;
} else {
printf("Invalid codec: %s\n", args.codecName.c_str());
printf("Invalid codec: %s\n", args->codecName.c_str());
return -1;
}
args.inputFile = FLAGS_input_filename;
args.outputFile = FLAGS_output_filename;
args.rtt = FLAGS_rtt;
args->inputFile = FLAGS_input_filename;
args->outputFile = FLAGS_output_filename;
args->rtt = FLAGS_rtt;
return 0;
}
} // namespace webrtc
int main(int argc, char **argv) {
int main(int argc, char** argv) {
// Initialize WebRTC fileutils.h so paths to resources can be resolved.
webrtc::test::SetExecutablePath(argv[0]);
google::ParseCommandLineFlags(&argc, &argv, true);
CmdArgs args;
if (ParseArguments(args) != 0) {
if (webrtc::ParseArguments(&args) != 0) {
printf("Unable to parse input arguments\n");
return -1;
}

View File

@ -22,9 +22,8 @@
namespace webrtc {
namespace rtpplayer {
class VcmPayloadSinkFactory::VcmPayloadSink
: public PayloadSinkInterface,
public VCMPacketRequestCallback {
class VcmPayloadSinkFactory::VcmPayloadSink : public PayloadSinkInterface,
public VCMPacketRequestCallback {
public:
VcmPayloadSink(VcmPayloadSinkFactory* factory,
RtpStreamInterface* stream,
@ -43,9 +42,7 @@ class VcmPayloadSinkFactory::VcmPayloadSink
vcm_->RegisterReceiveCallback(frame_receiver_.get());
}
virtual ~VcmPayloadSink() {
factory_->Remove(this);
}
virtual ~VcmPayloadSink() { factory_->Remove(this); }
// PayloadSinkInterface
int32_t OnReceivedPayloadData(const uint8_t* payload_data,
@ -136,8 +133,7 @@ PayloadSinkInterface* VcmPayloadSinkFactory::Create(
}
const PayloadTypes& plt = stream->payload_types();
for (PayloadTypesIterator it = plt.begin(); it != plt.end();
++it) {
for (PayloadTypesIterator it = plt.begin(); it != plt.end(); ++it) {
if (it->codec_type() != kVideoCodecULPFEC &&
it->codec_type() != kVideoCodecRED) {
VideoCodec codec;

View File

@ -29,9 +29,11 @@ namespace rtpplayer {
class VcmPayloadSinkFactory : public PayloadSinkFactoryInterface {
public:
VcmPayloadSinkFactory(const std::string& base_out_filename,
Clock* clock, bool protection_enabled,
Clock* clock,
bool protection_enabled,
VCMVideoProtection protection_method,
int64_t rtt_ms, uint32_t render_delay_ms,
int64_t rtt_ms,
uint32_t render_delay_ms,
uint32_t min_playout_delay_ms);
virtual ~VcmPayloadSinkFactory();

View File

@ -48,9 +48,9 @@ int RtpPlay(const CmdArgs& args) {
output_file = webrtc::test::OutputPath() + "RtpPlay_decoded.yuv";
webrtc::SimulatedClock clock(0);
webrtc::rtpplayer::VcmPayloadSinkFactory factory(output_file, &clock,
kConfigProtectionEnabled, kConfigProtectionMethod, kConfigRttMs,
kConfigRenderDelayMs, kConfigMinPlayoutDelayMs);
webrtc::rtpplayer::VcmPayloadSinkFactory factory(
output_file, &clock, kConfigProtectionEnabled, kConfigProtectionMethod,
kConfigRttMs, kConfigRenderDelayMs, kConfigMinPlayoutDelayMs);
rtc::scoped_ptr<webrtc::rtpplayer::RtpPlayerInterface> rtp_player(
webrtc::rtpplayer::Create(args.inputFile, &factory, &clock, payload_types,
kConfigLossRate, kConfigRttMs,
@ -63,7 +63,7 @@ int RtpPlay(const CmdArgs& args) {
while ((ret = rtp_player->NextPacket(clock.TimeInMilliseconds())) == 0) {
ret = factory.DecodeAndProcessAll(true);
if (ret < 0 || (kConfigMaxRuntimeMs > -1 &&
clock.TimeInMilliseconds() >= kConfigMaxRuntimeMs)) {
clock.TimeInMilliseconds() >= kConfigMaxRuntimeMs)) {
break;
}
clock.AdvanceTimeMilliseconds(1);

View File

@ -11,72 +11,75 @@
#ifndef WEBRTC_MODULES_VIDEO_CODING_TEST_VIDEO_SOURCE_H_
#define WEBRTC_MODULES_VIDEO_CODING_TEST_VIDEO_SOURCE_H_
#include <string>
#include "webrtc/common_video/libyuv/include/webrtc_libyuv.h"
#include "webrtc/typedefs.h"
#include <string>
enum VideoSize {
kUndefined,
kSQCIF, // 128*96 = 12 288
kQQVGA, // 160*120 = 19 200
kQCIF, // 176*144 = 25 344
kCGA, // 320*200 = 64 000
kQVGA, // 320*240 = 76 800
kSIF, // 352*240 = 84 480
kWQVGA, // 400*240 = 96 000
kCIF, // 352*288 = 101 376
kW288p, // 512*288 = 147 456 (WCIF)
k448p, // 576*448 = 281 088
kVGA, // 640*480 = 307 200
k432p, // 720*432 = 311 040
kW432p, // 768*432 = 331 776
k4SIF, // 704*480 = 337 920
kW448p, // 768*448 = 344 064
kNTSC, // 720*480 = 345 600
kFW448p, // 800*448 = 358 400
kWVGA, // 800*480 = 384 000
k4CIF, // 704*576 = 405 504
kSVGA, // 800*600 = 480 000
kW544p, // 960*544 = 522 240
kW576p, // 1024*576 = 589 824 (W4CIF)
kHD, // 960*720 = 691 200
kXGA, // 1024*768 = 786 432
kWHD, // 1280*720 = 921 600
kFullHD, // 1440*1080 = 1 555 200
kWFullHD, // 1920*1080 = 2 073 600
enum VideoSize
{
kUndefined,
kSQCIF, // 128*96 = 12 288
kQQVGA, // 160*120 = 19 200
kQCIF, // 176*144 = 25 344
kCGA, // 320*200 = 64 000
kQVGA, // 320*240 = 76 800
kSIF, // 352*240 = 84 480
kWQVGA, // 400*240 = 96 000
kCIF, // 352*288 = 101 376
kW288p, // 512*288 = 147 456 (WCIF)
k448p, // 576*448 = 281 088
kVGA, // 640*480 = 307 200
k432p, // 720*432 = 311 040
kW432p, // 768*432 = 331 776
k4SIF, // 704*480 = 337 920
kW448p, // 768*448 = 344 064
kNTSC, // 720*480 = 345 600
kFW448p, // 800*448 = 358 400
kWVGA, // 800*480 = 384 000
k4CIF, // 704*576 = 405 504
kSVGA, // 800*600 = 480 000
kW544p, // 960*544 = 522 240
kW576p, // 1024*576 = 589 824 (W4CIF)
kHD, // 960*720 = 691 200
kXGA, // 1024*768 = 786 432
kWHD, // 1280*720 = 921 600
kFullHD, // 1440*1080 = 1 555 200
kWFullHD, // 1920*1080 = 2 073 600
kNumberOfVideoSizes
};
class VideoSource
{
public:
VideoSource();
VideoSource(std::string fileName, VideoSize size, float frameRate, webrtc::VideoType type = webrtc::kI420);
VideoSource(std::string fileName, uint16_t width, uint16_t height,
float frameRate = 30, webrtc::VideoType type = webrtc::kI420);
std::string GetFileName() const { return _fileName; }
uint16_t GetWidth() const { return _width; }
uint16_t GetHeight() const { return _height; }
webrtc::VideoType GetType() const { return _type; }
float GetFrameRate() const { return _frameRate; }
int GetWidthHeight( VideoSize size);
// Returns the filename with the path (including the leading slash) removed.
std::string GetName() const;
size_t GetFrameLength() const;
private:
std::string _fileName;
uint16_t _width;
uint16_t _height;
webrtc::VideoType _type;
float _frameRate;
kNumberOfVideoSizes
};
#endif // WEBRTC_MODULES_VIDEO_CODING_TEST_VIDEO_SOURCE_H_
class VideoSource {
public:
VideoSource();
VideoSource(std::string fileName,
VideoSize size,
float frameRate,
webrtc::VideoType type = webrtc::kI420);
VideoSource(std::string fileName,
uint16_t width,
uint16_t height,
float frameRate = 30,
webrtc::VideoType type = webrtc::kI420);
std::string GetFileName() const { return _fileName; }
uint16_t GetWidth() const { return _width; }
uint16_t GetHeight() const { return _height; }
webrtc::VideoType GetType() const { return _type; }
float GetFrameRate() const { return _frameRate; }
int GetWidthHeight(VideoSize size);
// Returns the filename with the path (including the leading slash) removed.
std::string GetName() const;
size_t GetFrameLength() const;
private:
std::string _fileName;
uint16_t _width;
uint16_t _height;
webrtc::VideoType _type;
float _frameRate;
};
#endif // WEBRTC_MODULES_VIDEO_CODING_TEST_VIDEO_SOURCE_H_

View File

@ -20,11 +20,9 @@ VCMTimestampMap::VCMTimestampMap(size_t capacity)
: ring_buffer_(new TimestampDataTuple[capacity]),
capacity_(capacity),
next_add_idx_(0),
next_pop_idx_(0) {
}
next_pop_idx_(0) {}
VCMTimestampMap::~VCMTimestampMap() {
}
VCMTimestampMap::~VCMTimestampMap() {}
void VCMTimestampMap::Add(uint32_t timestamp, VCMFrameInformation* data) {
ring_buffer_[next_add_idx_].timestamp = timestamp;
@ -62,4 +60,4 @@ VCMFrameInformation* VCMTimestampMap::Pop(uint32_t timestamp) {
bool VCMTimestampMap::IsEmpty() const {
return (next_add_idx_ == next_pop_idx_);
}
}
} // namespace webrtc

View File

@ -44,4 +44,4 @@ class VCMTimestampMap {
} // namespace webrtc
#endif // WEBRTC_MODULES_VIDEO_CODING_TIMESTAMP_MAP_H_
#endif // WEBRTC_MODULES_VIDEO_CODING_TIMESTAMP_MAP_H_

View File

@ -10,17 +10,17 @@
#include "webrtc/modules/video_coding/timing.h"
#include <algorithm>
#include "webrtc/modules/video_coding/internal_defines.h"
#include "webrtc/modules/video_coding/jitter_buffer_common.h"
#include "webrtc/system_wrappers/include/clock.h"
#include "webrtc/system_wrappers/include/metrics.h"
#include "webrtc/system_wrappers/include/timestamp_extrapolator.h"
namespace webrtc {
VCMTiming::VCMTiming(Clock* clock,
VCMTiming* master_timing)
VCMTiming::VCMTiming(Clock* clock, VCMTiming* master_timing)
: crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
clock_(clock),
master_(false),
@ -120,8 +120,8 @@ void VCMTiming::UpdateCurrentDelay(uint32_t frame_timestamp) {
// Not initialized, set current delay to target.
current_delay_ms_ = target_delay_ms;
} else if (target_delay_ms != current_delay_ms_) {
int64_t delay_diff_ms = static_cast<int64_t>(target_delay_ms) -
current_delay_ms_;
int64_t delay_diff_ms =
static_cast<int64_t>(target_delay_ms) - current_delay_ms_;
// Never change the delay with more than 100 ms every second. If we're
// changing the delay in too large steps we will get noticeable freezes. By
// limiting the change we can increase the delay in smaller steps, which
@ -130,11 +130,13 @@ void VCMTiming::UpdateCurrentDelay(uint32_t frame_timestamp) {
int64_t max_change_ms = 0;
if (frame_timestamp < 0x0000ffff && prev_frame_timestamp_ > 0xffff0000) {
// wrap
max_change_ms = kDelayMaxChangeMsPerS * (frame_timestamp +
(static_cast<int64_t>(1) << 32) - prev_frame_timestamp_) / 90000;
max_change_ms = kDelayMaxChangeMsPerS *
(frame_timestamp + (static_cast<int64_t>(1) << 32) -
prev_frame_timestamp_) /
90000;
} else {
max_change_ms = kDelayMaxChangeMsPerS *
(frame_timestamp - prev_frame_timestamp_) / 90000;
(frame_timestamp - prev_frame_timestamp_) / 90000;
}
if (max_change_ms <= 0) {
// Any changes less than 1 ms are truncated and
@ -155,7 +157,7 @@ void VCMTiming::UpdateCurrentDelay(int64_t render_time_ms,
CriticalSectionScoped cs(crit_sect_);
uint32_t target_delay_ms = TargetDelayInternal();
int64_t delayed_ms = actual_decode_time_ms -
(render_time_ms - MaxDecodeTimeMs() - render_delay_ms_);
(render_time_ms - MaxDecodeTimeMs() - render_delay_ms_);
if (delayed_ms < 0) {
return;
}
@ -193,8 +195,8 @@ void VCMTiming::IncomingTimestamp(uint32_t time_stamp, int64_t now_ms) {
ts_extrapolator_->Update(now_ms, time_stamp);
}
int64_t VCMTiming::RenderTimeMs(uint32_t frame_timestamp, int64_t now_ms)
const {
int64_t VCMTiming::RenderTimeMs(uint32_t frame_timestamp,
int64_t now_ms) const {
CriticalSectionScoped cs(crit_sect_);
const int64_t render_time_ms = RenderTimeMsInternal(frame_timestamp, now_ms);
return render_time_ms;
@ -203,7 +205,7 @@ int64_t VCMTiming::RenderTimeMs(uint32_t frame_timestamp, int64_t now_ms)
int64_t VCMTiming::RenderTimeMsInternal(uint32_t frame_timestamp,
int64_t now_ms) const {
int64_t estimated_complete_time_ms =
ts_extrapolator_->ExtrapolateLocalTime(frame_timestamp);
ts_extrapolator_->ExtrapolateLocalTime(frame_timestamp);
if (estimated_complete_time_ms == -1) {
estimated_complete_time_ms = now_ms;
}
@ -214,19 +216,19 @@ int64_t VCMTiming::RenderTimeMsInternal(uint32_t frame_timestamp,
}
// Must be called from inside a critical section.
int32_t VCMTiming::MaxDecodeTimeMs(FrameType frame_type /*= kVideoFrameDelta*/)
const {
int32_t VCMTiming::MaxDecodeTimeMs(
FrameType frame_type /*= kVideoFrameDelta*/) const {
const int32_t decode_time_ms = codec_timer_.RequiredDecodeTimeMs(frame_type);
assert(decode_time_ms >= 0);
return decode_time_ms;
}
uint32_t VCMTiming::MaxWaitingTime(int64_t render_time_ms, int64_t now_ms)
const {
uint32_t VCMTiming::MaxWaitingTime(int64_t render_time_ms,
int64_t now_ms) const {
CriticalSectionScoped cs(crit_sect_);
const int64_t max_wait_time_ms = render_time_ms - now_ms -
MaxDecodeTimeMs() - render_delay_ms_;
const int64_t max_wait_time_ms =
render_time_ms - now_ms - MaxDecodeTimeMs() - render_delay_ms_;
if (max_wait_time_ms < 0) {
return 0;
@ -234,8 +236,8 @@ uint32_t VCMTiming::MaxWaitingTime(int64_t render_time_ms, int64_t now_ms)
return static_cast<uint32_t>(max_wait_time_ms);
}
bool VCMTiming::EnoughTimeToDecode(uint32_t available_processing_time_ms)
const {
bool VCMTiming::EnoughTimeToDecode(
uint32_t available_processing_time_ms) const {
CriticalSectionScoped cs(crit_sect_);
int32_t max_decode_time_ms = MaxDecodeTimeMs();
if (max_decode_time_ms < 0) {
@ -248,7 +250,8 @@ bool VCMTiming::EnoughTimeToDecode(uint32_t available_processing_time_ms)
max_decode_time_ms = 1;
}
return static_cast<int32_t>(available_processing_time_ms) -
max_decode_time_ms > 0;
max_decode_time_ms >
0;
}
uint32_t VCMTiming::TargetVideoDelay() const {
@ -258,7 +261,7 @@ uint32_t VCMTiming::TargetVideoDelay() const {
uint32_t VCMTiming::TargetDelayInternal() const {
return std::max(min_playout_delay_ms_,
jitter_delay_ms_ + MaxDecodeTimeMs() + render_delay_ms_);
jitter_delay_ms_ + MaxDecodeTimeMs() + render_delay_ms_);
}
void VCMTiming::GetTimings(int* decode_ms,

View File

@ -25,8 +25,7 @@ class VCMTiming {
public:
// The primary timing component should be passed
// if this is the dual timing component.
VCMTiming(Clock* clock,
VCMTiming* master_timing = NULL);
explicit VCMTiming(Clock* clock, VCMTiming* master_timing = NULL);
~VCMTiming();
// Resets the timing to the initial state.

View File

@ -55,8 +55,9 @@ TEST(ReceiverTiming, Tests) {
clock.AdvanceTimeMilliseconds(1000);
timing.SetJitterDelay(jitterDelayMs);
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(timing.RenderTimeMs(
timeStamp, clock.TimeInMilliseconds()), clock.TimeInMilliseconds());
waitTime = timing.MaxWaitingTime(
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
clock.TimeInMilliseconds());
// Since we gradually increase the delay we only get 100 ms every second.
EXPECT_EQ(jitterDelayMs - 10, waitTime);
@ -85,11 +86,10 @@ TEST(ReceiverTiming, Tests) {
for (int i = 0; i < 10; i++) {
int64_t startTimeMs = clock.TimeInMilliseconds();
clock.AdvanceTimeMilliseconds(10);
timing.StopDecodeTimer(timeStamp,
clock.TimeInMilliseconds() - startTimeMs,
clock.TimeInMilliseconds(),
timing.RenderTimeMs(
timeStamp, clock.TimeInMilliseconds()));
timing.StopDecodeTimer(
timeStamp, clock.TimeInMilliseconds() - startTimeMs,
clock.TimeInMilliseconds(),
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()));
timeStamp += 90000 / 25;
clock.AdvanceTimeMilliseconds(1000 / 25 - 10);
timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds());
@ -107,7 +107,7 @@ TEST(ReceiverTiming, Tests) {
uint32_t minTotalDelayMs = 200;
timing.set_min_playout_delay(minTotalDelayMs);
clock.AdvanceTimeMilliseconds(5000);
timeStamp += 5*90000;
timeStamp += 5 * 90000;
timing.UpdateCurrentDelay(timeStamp);
const int kRenderDelayMs = 10;
timing.set_render_delay(kRenderDelayMs);
@ -123,7 +123,7 @@ TEST(ReceiverTiming, Tests) {
// Reset playout delay.
timing.set_min_playout_delay(0);
clock.AdvanceTimeMilliseconds(5000);
timeStamp += 5*90000;
timeStamp += 5 * 90000;
timing.UpdateCurrentDelay(timeStamp);
}
@ -137,8 +137,8 @@ TEST(ReceiverTiming, WrapAround) {
timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds());
clock.AdvanceTimeMilliseconds(1000 / kFramerate);
timestamp += 90000 / kFramerate;
int64_t render_time = timing.RenderTimeMs(0xFFFFFFFFu,
clock.TimeInMilliseconds());
int64_t render_time =
timing.RenderTimeMs(0xFFFFFFFFu, clock.TimeInMilliseconds());
EXPECT_EQ(3 * 1000 / kFramerate, render_time);
render_time = timing.RenderTimeMs(89u, // One second later in 90 kHz.
clock.TimeInMilliseconds());

View File

@ -12,8 +12,7 @@
#include "webrtc/system_wrappers/include/trace.h"
namespace webrtc
{
namespace webrtc {
const float kDefaultKeyFrameSizeAvgKBits = 0.9f;
const float kDefaultKeyFrameRatio = 0.99f;
@ -22,339 +21,266 @@ const float kDefaultDropRatioMax = 0.96f;
const float kDefaultMaxTimeToDropFrames = 4.0f; // In seconds.
FrameDropper::FrameDropper()
:
_keyFrameSizeAvgKbits(kDefaultKeyFrameSizeAvgKBits),
_keyFrameRatio(kDefaultKeyFrameRatio),
_dropRatio(kDefaultDropRatioAlpha, kDefaultDropRatioMax),
_enabled(true),
_max_time_drops(kDefaultMaxTimeToDropFrames)
{
Reset();
: _keyFrameSizeAvgKbits(kDefaultKeyFrameSizeAvgKBits),
_keyFrameRatio(kDefaultKeyFrameRatio),
_dropRatio(kDefaultDropRatioAlpha, kDefaultDropRatioMax),
_enabled(true),
_max_time_drops(kDefaultMaxTimeToDropFrames) {
Reset();
}
FrameDropper::FrameDropper(float max_time_drops)
:
_keyFrameSizeAvgKbits(kDefaultKeyFrameSizeAvgKBits),
_keyFrameRatio(kDefaultKeyFrameRatio),
_dropRatio(kDefaultDropRatioAlpha, kDefaultDropRatioMax),
_enabled(true),
_max_time_drops(max_time_drops)
{
Reset();
: _keyFrameSizeAvgKbits(kDefaultKeyFrameSizeAvgKBits),
_keyFrameRatio(kDefaultKeyFrameRatio),
_dropRatio(kDefaultDropRatioAlpha, kDefaultDropRatioMax),
_enabled(true),
_max_time_drops(max_time_drops) {
Reset();
}
void
FrameDropper::Reset()
{
_keyFrameRatio.Reset(0.99f);
_keyFrameRatio.Apply(1.0f, 1.0f/300.0f); // 1 key frame every 10th second in 30 fps
_keyFrameSizeAvgKbits.Reset(0.9f);
_keyFrameCount = 0;
void FrameDropper::Reset() {
_keyFrameRatio.Reset(0.99f);
_keyFrameRatio.Apply(
1.0f, 1.0f / 300.0f); // 1 key frame every 10th second in 30 fps
_keyFrameSizeAvgKbits.Reset(0.9f);
_keyFrameCount = 0;
_accumulator = 0.0f;
_accumulatorMax = 150.0f; // assume 300 kb/s and 0.5 s window
_targetBitRate = 300.0f;
_incoming_frame_rate = 30;
_keyFrameSpreadFrames = 0.5f * _incoming_frame_rate;
_dropNext = false;
_dropRatio.Reset(0.9f);
_dropRatio.Apply(0.0f, 0.0f); // Initialize to 0
_dropCount = 0;
_windowSize = 0.5f;
_wasBelowMax = true;
_fastMode = false; // start with normal (non-aggressive) mode
// Cap for the encoder buffer level/accumulator, in secs.
_cap_buffer_size = 3.0f;
// Cap on maximum amount of dropped frames between kept frames, in secs.
_max_time_drops = 4.0f;
}
void FrameDropper::Enable(bool enable) {
_enabled = enable;
}
void FrameDropper::Fill(size_t frameSizeBytes, bool deltaFrame) {
if (!_enabled) {
return;
}
float frameSizeKbits = 8.0f * static_cast<float>(frameSizeBytes) / 1000.0f;
if (!deltaFrame &&
!_fastMode) { // fast mode does not treat key-frames any different
_keyFrameSizeAvgKbits.Apply(1, frameSizeKbits);
_keyFrameRatio.Apply(1.0, 1.0);
if (frameSizeKbits > _keyFrameSizeAvgKbits.filtered()) {
// Remove the average key frame size since we
// compensate for key frames when adding delta
// frames.
frameSizeKbits -= _keyFrameSizeAvgKbits.filtered();
} else {
// Shouldn't be negative, so zero is the lower bound.
frameSizeKbits = 0;
}
if (_keyFrameRatio.filtered() > 1e-5 &&
1 / _keyFrameRatio.filtered() < _keyFrameSpreadFrames) {
// We are sending key frames more often than our upper bound for
// how much we allow the key frame compensation to be spread
// out in time. Therefor we must use the key frame ratio rather
// than keyFrameSpreadFrames.
_keyFrameCount =
static_cast<int32_t>(1 / _keyFrameRatio.filtered() + 0.5);
} else {
// Compensate for the key frame the following frames
_keyFrameCount = static_cast<int32_t>(_keyFrameSpreadFrames + 0.5);
}
} else {
// Decrease the keyFrameRatio
_keyFrameRatio.Apply(1.0, 0.0);
}
// Change the level of the accumulator (bucket)
_accumulator += frameSizeKbits;
CapAccumulator();
}
void FrameDropper::Leak(uint32_t inputFrameRate) {
if (!_enabled) {
return;
}
if (inputFrameRate < 1) {
return;
}
if (_targetBitRate < 0.0f) {
return;
}
_keyFrameSpreadFrames = 0.5f * inputFrameRate;
// T is the expected bits per frame (target). If all frames were the same
// size,
// we would get T bits per frame. Notice that T is also weighted to be able to
// force a lower frame rate if wanted.
float T = _targetBitRate / inputFrameRate;
if (_keyFrameCount > 0) {
// Perform the key frame compensation
if (_keyFrameRatio.filtered() > 0 &&
1 / _keyFrameRatio.filtered() < _keyFrameSpreadFrames) {
T -= _keyFrameSizeAvgKbits.filtered() * _keyFrameRatio.filtered();
} else {
T -= _keyFrameSizeAvgKbits.filtered() / _keyFrameSpreadFrames;
}
_keyFrameCount--;
}
_accumulator -= T;
if (_accumulator < 0.0f) {
_accumulator = 0.0f;
_accumulatorMax = 150.0f; // assume 300 kb/s and 0.5 s window
_targetBitRate = 300.0f;
_incoming_frame_rate = 30;
_keyFrameSpreadFrames = 0.5f * _incoming_frame_rate;
_dropNext = false;
_dropRatio.Reset(0.9f);
_dropRatio.Apply(0.0f, 0.0f); // Initialize to 0
_dropCount = 0;
_windowSize = 0.5f;
_wasBelowMax = true;
_fastMode = false; // start with normal (non-aggressive) mode
// Cap for the encoder buffer level/accumulator, in secs.
_cap_buffer_size = 3.0f;
// Cap on maximum amount of dropped frames between kept frames, in secs.
_max_time_drops = 4.0f;
}
UpdateRatio();
}
void
FrameDropper::Enable(bool enable)
{
_enabled = enable;
void FrameDropper::UpdateNack(uint32_t nackBytes) {
if (!_enabled) {
return;
}
_accumulator += static_cast<float>(nackBytes) * 8.0f / 1000.0f;
}
void
FrameDropper::Fill(size_t frameSizeBytes, bool deltaFrame)
{
if (!_enabled)
{
return;
}
float frameSizeKbits = 8.0f * static_cast<float>(frameSizeBytes) / 1000.0f;
if (!deltaFrame && !_fastMode) // fast mode does not treat key-frames any different
{
_keyFrameSizeAvgKbits.Apply(1, frameSizeKbits);
_keyFrameRatio.Apply(1.0, 1.0);
if (frameSizeKbits > _keyFrameSizeAvgKbits.filtered())
{
// Remove the average key frame size since we
// compensate for key frames when adding delta
// frames.
frameSizeKbits -= _keyFrameSizeAvgKbits.filtered();
}
else
{
// Shouldn't be negative, so zero is the lower bound.
frameSizeKbits = 0;
}
if (_keyFrameRatio.filtered() > 1e-5 &&
1 / _keyFrameRatio.filtered() < _keyFrameSpreadFrames)
{
// We are sending key frames more often than our upper bound for
// how much we allow the key frame compensation to be spread
// out in time. Therefor we must use the key frame ratio rather
// than keyFrameSpreadFrames.
_keyFrameCount =
static_cast<int32_t>(1 / _keyFrameRatio.filtered() + 0.5);
}
else
{
// Compensate for the key frame the following frames
_keyFrameCount = static_cast<int32_t>(_keyFrameSpreadFrames + 0.5);
}
}
else
{
// Decrease the keyFrameRatio
_keyFrameRatio.Apply(1.0, 0.0);
}
// Change the level of the accumulator (bucket)
_accumulator += frameSizeKbits;
CapAccumulator();
void FrameDropper::FillBucket(float inKbits, float outKbits) {
_accumulator += (inKbits - outKbits);
}
void
FrameDropper::Leak(uint32_t inputFrameRate)
{
if (!_enabled)
{
return;
void FrameDropper::UpdateRatio() {
if (_accumulator > 1.3f * _accumulatorMax) {
// Too far above accumulator max, react faster
_dropRatio.UpdateBase(0.8f);
} else {
// Go back to normal reaction
_dropRatio.UpdateBase(0.9f);
}
if (_accumulator > _accumulatorMax) {
// We are above accumulator max, and should ideally
// drop a frame. Increase the dropRatio and drop
// the frame later.
if (_wasBelowMax) {
_dropNext = true;
}
if (inputFrameRate < 1)
{
return;
if (_fastMode) {
// always drop in aggressive mode
_dropNext = true;
}
if (_targetBitRate < 0.0f)
{
return;
}
_keyFrameSpreadFrames = 0.5f * inputFrameRate;
// T is the expected bits per frame (target). If all frames were the same size,
// we would get T bits per frame. Notice that T is also weighted to be able to
// force a lower frame rate if wanted.
float T = _targetBitRate / inputFrameRate;
if (_keyFrameCount > 0)
{
// Perform the key frame compensation
if (_keyFrameRatio.filtered() > 0 &&
1 / _keyFrameRatio.filtered() < _keyFrameSpreadFrames)
{
T -= _keyFrameSizeAvgKbits.filtered() * _keyFrameRatio.filtered();
}
else
{
T -= _keyFrameSizeAvgKbits.filtered() / _keyFrameSpreadFrames;
}
_keyFrameCount--;
}
_accumulator -= T;
if (_accumulator < 0.0f)
{
_accumulator = 0.0f;
}
UpdateRatio();
_dropRatio.Apply(1.0f, 1.0f);
_dropRatio.UpdateBase(0.9f);
} else {
_dropRatio.Apply(1.0f, 0.0f);
}
_wasBelowMax = _accumulator < _accumulatorMax;
}
void
FrameDropper::UpdateNack(uint32_t nackBytes)
{
if (!_enabled)
{
return;
}
_accumulator += static_cast<float>(nackBytes) * 8.0f / 1000.0f;
}
void
FrameDropper::FillBucket(float inKbits, float outKbits)
{
_accumulator += (inKbits - outKbits);
}
void
FrameDropper::UpdateRatio()
{
if (_accumulator > 1.3f * _accumulatorMax)
{
// Too far above accumulator max, react faster
_dropRatio.UpdateBase(0.8f);
}
else
{
// Go back to normal reaction
_dropRatio.UpdateBase(0.9f);
}
if (_accumulator > _accumulatorMax)
{
// We are above accumulator max, and should ideally
// drop a frame. Increase the dropRatio and drop
// the frame later.
if (_wasBelowMax)
{
_dropNext = true;
}
if (_fastMode)
{
// always drop in aggressive mode
_dropNext = true;
}
_dropRatio.Apply(1.0f, 1.0f);
_dropRatio.UpdateBase(0.9f);
}
else
{
_dropRatio.Apply(1.0f, 0.0f);
}
_wasBelowMax = _accumulator < _accumulatorMax;
}
// This function signals when to drop frames to the caller. It makes use of the dropRatio
// This function signals when to drop frames to the caller. It makes use of the
// dropRatio
// to smooth out the drops over time.
bool
FrameDropper::DropFrame()
{
if (!_enabled)
{
return false;
}
if (_dropNext)
{
_dropNext = false;
_dropCount = 0;
}
if (_dropRatio.filtered() >= 0.5f) // Drops per keep
{
// limit is the number of frames we should drop between each kept frame
// to keep our drop ratio. limit is positive in this case.
float denom = 1.0f - _dropRatio.filtered();
if (denom < 1e-5)
{
denom = (float)1e-5;
}
int32_t limit = static_cast<int32_t>(1.0f / denom - 1.0f + 0.5f);
// Put a bound on the max amount of dropped frames between each kept
// frame, in terms of frame rate and window size (secs).
int max_limit = static_cast<int>(_incoming_frame_rate *
_max_time_drops);
if (limit > max_limit) {
limit = max_limit;
}
if (_dropCount < 0)
{
// Reset the _dropCount since it was negative and should be positive.
if (_dropRatio.filtered() > 0.4f)
{
_dropCount = -_dropCount;
}
else
{
_dropCount = 0;
}
}
if (_dropCount < limit)
{
// As long we are below the limit we should drop frames.
_dropCount++;
return true;
}
else
{
// Only when we reset _dropCount a frame should be kept.
_dropCount = 0;
return false;
}
}
else if (_dropRatio.filtered() > 0.0f &&
_dropRatio.filtered() < 0.5f) // Keeps per drop
{
// limit is the number of frames we should keep between each drop
// in order to keep the drop ratio. limit is negative in this case,
// and the _dropCount is also negative.
float denom = _dropRatio.filtered();
if (denom < 1e-5)
{
denom = (float)1e-5;
}
int32_t limit = -static_cast<int32_t>(1.0f / denom - 1.0f + 0.5f);
if (_dropCount > 0)
{
// Reset the _dropCount since we have a positive
// _dropCount, and it should be negative.
if (_dropRatio.filtered() < 0.6f)
{
_dropCount = -_dropCount;
}
else
{
_dropCount = 0;
}
}
if (_dropCount > limit)
{
if (_dropCount == 0)
{
// Drop frames when we reset _dropCount.
_dropCount--;
return true;
}
else
{
// Keep frames as long as we haven't reached limit.
_dropCount--;
return false;
}
}
else
{
_dropCount = 0;
return false;
}
}
_dropCount = 0;
bool FrameDropper::DropFrame() {
if (!_enabled) {
return false;
}
if (_dropNext) {
_dropNext = false;
_dropCount = 0;
}
// A simpler version, unfiltered and quicker
//bool dropNext = _dropNext;
//_dropNext = false;
//return dropNext;
if (_dropRatio.filtered() >= 0.5f) { // Drops per keep
// limit is the number of frames we should drop between each kept frame
// to keep our drop ratio. limit is positive in this case.
float denom = 1.0f - _dropRatio.filtered();
if (denom < 1e-5) {
denom = 1e-5f;
}
int32_t limit = static_cast<int32_t>(1.0f / denom - 1.0f + 0.5f);
// Put a bound on the max amount of dropped frames between each kept
// frame, in terms of frame rate and window size (secs).
int max_limit = static_cast<int>(_incoming_frame_rate * _max_time_drops);
if (limit > max_limit) {
limit = max_limit;
}
if (_dropCount < 0) {
// Reset the _dropCount since it was negative and should be positive.
if (_dropRatio.filtered() > 0.4f) {
_dropCount = -_dropCount;
} else {
_dropCount = 0;
}
}
if (_dropCount < limit) {
// As long we are below the limit we should drop frames.
_dropCount++;
return true;
} else {
// Only when we reset _dropCount a frame should be kept.
_dropCount = 0;
return false;
}
} else if (_dropRatio.filtered() > 0.0f &&
_dropRatio.filtered() < 0.5f) { // Keeps per drop
// limit is the number of frames we should keep between each drop
// in order to keep the drop ratio. limit is negative in this case,
// and the _dropCount is also negative.
float denom = _dropRatio.filtered();
if (denom < 1e-5) {
denom = 1e-5f;
}
int32_t limit = -static_cast<int32_t>(1.0f / denom - 1.0f + 0.5f);
if (_dropCount > 0) {
// Reset the _dropCount since we have a positive
// _dropCount, and it should be negative.
if (_dropRatio.filtered() < 0.6f) {
_dropCount = -_dropCount;
} else {
_dropCount = 0;
}
}
if (_dropCount > limit) {
if (_dropCount == 0) {
// Drop frames when we reset _dropCount.
_dropCount--;
return true;
} else {
// Keep frames as long as we haven't reached limit.
_dropCount--;
return false;
}
} else {
_dropCount = 0;
return false;
}
}
_dropCount = 0;
return false;
// A simpler version, unfiltered and quicker
// bool dropNext = _dropNext;
// _dropNext = false;
// return dropNext;
}
void
FrameDropper::SetRates(float bitRate, float incoming_frame_rate)
{
// Bit rate of -1 means infinite bandwidth.
_accumulatorMax = bitRate * _windowSize; // bitRate * windowSize (in seconds)
if (_targetBitRate > 0.0f && bitRate < _targetBitRate && _accumulator > _accumulatorMax)
{
// Rescale the accumulator level if the accumulator max decreases
_accumulator = bitRate / _targetBitRate * _accumulator;
}
_targetBitRate = bitRate;
CapAccumulator();
_incoming_frame_rate = incoming_frame_rate;
void FrameDropper::SetRates(float bitRate, float incoming_frame_rate) {
// Bit rate of -1 means infinite bandwidth.
_accumulatorMax = bitRate * _windowSize; // bitRate * windowSize (in seconds)
if (_targetBitRate > 0.0f && bitRate < _targetBitRate &&
_accumulator > _accumulatorMax) {
// Rescale the accumulator level if the accumulator max decreases
_accumulator = bitRate / _targetBitRate * _accumulator;
}
_targetBitRate = bitRate;
CapAccumulator();
_incoming_frame_rate = incoming_frame_rate;
}
float
FrameDropper::ActualFrameRate(uint32_t inputFrameRate) const
{
if (!_enabled)
{
return static_cast<float>(inputFrameRate);
}
return inputFrameRate * (1.0f - _dropRatio.filtered());
float FrameDropper::ActualFrameRate(uint32_t inputFrameRate) const {
if (!_enabled) {
return static_cast<float>(inputFrameRate);
}
return inputFrameRate * (1.0f - _dropRatio.filtered());
}
// Put a cap on the accumulator, i.e., don't let it grow beyond some level.
@ -366,5 +292,4 @@ void FrameDropper::CapAccumulator() {
_accumulator = max_accumulator;
}
}
}
} // namespace webrtc

View File

@ -23,72 +23,72 @@ namespace webrtc {
// over use when the encoder can't keep its bit rate.
class FrameDropper {
public:
FrameDropper();
explicit FrameDropper(float max_time_drops);
virtual ~FrameDropper() {}
FrameDropper();
explicit FrameDropper(float max_time_drops);
virtual ~FrameDropper() {}
// Resets the FrameDropper to its initial state.
// This means that the frameRateWeight is set to its
// default value as well.
virtual void Reset();
// Resets the FrameDropper to its initial state.
// This means that the frameRateWeight is set to its
// default value as well.
virtual void Reset();
virtual void Enable(bool enable);
// Answers the question if it's time to drop a frame
// if we want to reach a given frame rate. Must be
// called for every frame.
//
// Return value : True if we should drop the current frame
virtual bool DropFrame();
// Updates the FrameDropper with the size of the latest encoded
// frame. The FrameDropper calculates a new drop ratio (can be
// seen as the probability to drop a frame) and updates its
// internal statistics.
//
// Input:
// - frameSizeBytes : The size of the latest frame
// returned from the encoder.
// - deltaFrame : True if the encoder returned
// a key frame.
virtual void Fill(size_t frameSizeBytes, bool deltaFrame);
virtual void Enable(bool enable);
// Answers the question if it's time to drop a frame
// if we want to reach a given frame rate. Must be
// called for every frame.
//
// Return value : True if we should drop the current frame
virtual bool DropFrame();
// Updates the FrameDropper with the size of the latest encoded
// frame. The FrameDropper calculates a new drop ratio (can be
// seen as the probability to drop a frame) and updates its
// internal statistics.
//
// Input:
// - frameSizeBytes : The size of the latest frame
// returned from the encoder.
// - deltaFrame : True if the encoder returned
// a key frame.
virtual void Fill(size_t frameSizeBytes, bool deltaFrame);
virtual void Leak(uint32_t inputFrameRate);
virtual void Leak(uint32_t inputFrameRate);
void UpdateNack(uint32_t nackBytes);
void UpdateNack(uint32_t nackBytes);
// Sets the target bit rate and the frame rate produced by
// the camera.
//
// Input:
// - bitRate : The target bit rate
virtual void SetRates(float bitRate, float incoming_frame_rate);
// Sets the target bit rate and the frame rate produced by
// the camera.
//
// Input:
// - bitRate : The target bit rate
virtual void SetRates(float bitRate, float incoming_frame_rate);
// Return value : The current average frame rate produced
// if the DropFrame() function is used as
// instruction of when to drop frames.
virtual float ActualFrameRate(uint32_t inputFrameRate) const;
// Return value : The current average frame rate produced
// if the DropFrame() function is used as
// instruction of when to drop frames.
virtual float ActualFrameRate(uint32_t inputFrameRate) const;
private:
void FillBucket(float inKbits, float outKbits);
void UpdateRatio();
void CapAccumulator();
void FillBucket(float inKbits, float outKbits);
void UpdateRatio();
void CapAccumulator();
rtc::ExpFilter _keyFrameSizeAvgKbits;
rtc::ExpFilter _keyFrameRatio;
float _keyFrameSpreadFrames;
int32_t _keyFrameCount;
float _accumulator;
float _accumulatorMax;
float _targetBitRate;
bool _dropNext;
rtc::ExpFilter _dropRatio;
int32_t _dropCount;
float _windowSize;
float _incoming_frame_rate;
bool _wasBelowMax;
bool _enabled;
bool _fastMode;
float _cap_buffer_size;
float _max_time_drops;
rtc::ExpFilter _keyFrameSizeAvgKbits;
rtc::ExpFilter _keyFrameRatio;
float _keyFrameSpreadFrames;
int32_t _keyFrameCount;
float _accumulator;
float _accumulatorMax;
float _targetBitRate;
bool _dropNext;
rtc::ExpFilter _dropRatio;
int32_t _dropCount;
float _windowSize;
float _incoming_frame_rate;
bool _wasBelowMax;
bool _enabled;
bool _fastMode;
float _cap_buffer_size;
float _max_time_drops;
}; // end of VCMFrameDropper class
} // namespace webrtc

View File

@ -20,20 +20,13 @@ namespace webrtc {
class MockFrameDropper : public FrameDropper {
public:
MOCK_METHOD0(Reset,
void());
MOCK_METHOD1(Enable,
void(bool enable));
MOCK_METHOD0(DropFrame,
bool());
MOCK_METHOD2(Fill,
void(size_t frameSizeBytes, bool deltaFrame));
MOCK_METHOD1(Leak,
void(uint32_t inputFrameRate));
MOCK_METHOD2(SetRates,
void(float bitRate, float incoming_frame_rate));
MOCK_CONST_METHOD1(ActualFrameRate,
float(uint32_t inputFrameRate));
MOCK_METHOD0(Reset, void());
MOCK_METHOD1(Enable, void(bool enable));
MOCK_METHOD0(DropFrame, bool());
MOCK_METHOD2(Fill, void(size_t frameSizeBytes, bool deltaFrame));
MOCK_METHOD1(Leak, void(uint32_t inputFrameRate));
MOCK_METHOD2(SetRates, void(float bitRate, float incoming_frame_rate));
MOCK_CONST_METHOD1(ActualFrameRate, float(uint32_t inputFrameRate));
};
} // namespace webrtc

View File

@ -16,7 +16,7 @@
#include "webrtc/typedefs.h"
namespace webrtc {
template<class T>
template <class T>
class MovingAverage {
public:
MovingAverage();
@ -30,17 +30,17 @@ class MovingAverage {
std::list<T> samples_;
};
template<class T>
MovingAverage<T>::MovingAverage() : sum_(static_cast<T>(0)) {
}
template <class T>
MovingAverage<T>::MovingAverage()
: sum_(static_cast<T>(0)) {}
template<class T>
template <class T>
void MovingAverage<T>::AddSample(T sample) {
samples_.push_back(sample);
sum_ += sample;
}
template<class T>
template <class T>
bool MovingAverage<T>::GetAverage(size_t num_samples, T* avg) {
if (num_samples > samples_.size())
return false;
@ -55,13 +55,13 @@ bool MovingAverage<T>::GetAverage(size_t num_samples, T* avg) {
return true;
}
template<class T>
template <class T>
void MovingAverage<T>::Reset() {
sum_ = static_cast<T>(0);
samples_.clear();
}
template<class T>
template <class T>
int MovingAverage<T>::size() {
return samples_.size();
}

View File

@ -26,8 +26,7 @@ QualityScaler::QualityScaler()
downscale_shift_(0),
framerate_down_(false),
min_width_(kDefaultMinDownscaleDimension),
min_height_(kDefaultMinDownscaleDimension) {
}
min_height_(kDefaultMinDownscaleDimension) {}
void QualityScaler::Init(int low_qp_threshold,
int high_qp_threshold,
@ -91,7 +90,7 @@ void QualityScaler::OnEncodeFrame(const VideoFrame& frame) {
AdjustScale(false);
}
} else if (average_qp_.GetAverage(num_samples_, &avg_qp) &&
avg_qp <= low_qp_threshold_) {
avg_qp <= low_qp_threshold_) {
if (use_framerate_reduction_ && framerate_down_) {
target_framerate_ = -1;
framerate_down_ = false;
@ -104,7 +103,7 @@ void QualityScaler::OnEncodeFrame(const VideoFrame& frame) {
assert(downscale_shift_ >= 0);
for (int shift = downscale_shift_;
shift > 0 && (res_.width / 2 >= min_width_) &&
(res_.height / 2 >= min_height_);
(res_.height / 2 >= min_height_);
--shift) {
res_.width /= 2;
res_.height /= 2;
@ -124,13 +123,8 @@ const VideoFrame& QualityScaler::GetScaledFrame(const VideoFrame& frame) {
if (res.width == frame.width())
return frame;
scaler_.Set(frame.width(),
frame.height(),
res.width,
res.height,
kI420,
kI420,
kScaleBox);
scaler_.Set(frame.width(), frame.height(), res.width, res.height, kI420,
kI420, kScaleBox);
if (scaler_.Scale(frame, &scaled_frame_) != 0)
return frame;

View File

@ -33,6 +33,7 @@ class QualityScalerTest : public ::testing::Test {
int width;
int height;
};
protected:
enum ScaleDirection {
kKeepScaleAtHighQp,
@ -43,8 +44,8 @@ class QualityScalerTest : public ::testing::Test {
enum BadQualityMetric { kDropFrame, kReportLowQP };
QualityScalerTest() {
input_frame_.CreateEmptyFrame(
kWidth, kHeight, kWidth, kHalfWidth, kHalfWidth);
input_frame_.CreateEmptyFrame(kWidth, kHeight, kWidth, kHalfWidth,
kHalfWidth);
qs_.Init(kMaxQp / QualityScaler::kDefaultLowQpDenominator, kHighQp, false);
qs_.ReportFramerate(kFramerate);
qs_.OnEncodeFrame(input_frame_);
@ -97,7 +98,8 @@ class QualityScalerTest : public ::testing::Test {
int num_second,
int initial_framerate);
void VerifyQualityAdaptation(int initial_framerate, int seconds,
void VerifyQualityAdaptation(int initial_framerate,
int seconds,
bool expect_spatial_resize,
bool expect_framerate_reduction);
@ -183,8 +185,8 @@ TEST_F(QualityScalerTest, DoesNotDownscaleAfterHalfFramedrop) {
void QualityScalerTest::ContinuouslyDownscalesByHalfDimensionsAndBackUp() {
const int initial_min_dimension = input_frame_.width() < input_frame_.height()
? input_frame_.width()
: input_frame_.height();
? input_frame_.width()
: input_frame_.height();
int min_dimension = initial_min_dimension;
int current_shift = 0;
// Drop all frames to force-trigger downscaling.
@ -229,14 +231,14 @@ TEST_F(QualityScalerTest,
const int kOddWidth = 517;
const int kHalfOddWidth = (kOddWidth + 1) / 2;
const int kOddHeight = 1239;
input_frame_.CreateEmptyFrame(
kOddWidth, kOddHeight, kOddWidth, kHalfOddWidth, kHalfOddWidth);
input_frame_.CreateEmptyFrame(kOddWidth, kOddHeight, kOddWidth, kHalfOddWidth,
kHalfOddWidth);
ContinuouslyDownscalesByHalfDimensionsAndBackUp();
}
void QualityScalerTest::DoesNotDownscaleFrameDimensions(int width, int height) {
input_frame_.CreateEmptyFrame(
width, height, width, (width + 1) / 2, (width + 1) / 2);
input_frame_.CreateEmptyFrame(width, height, width, (width + 1) / 2,
(width + 1) / 2);
for (int i = 0; i < kFramerate * kNumSeconds; ++i) {
qs_.ReportDroppedFrame();
@ -259,7 +261,9 @@ TEST_F(QualityScalerTest, DoesNotDownscaleFrom1Px) {
}
QualityScalerTest::Resolution QualityScalerTest::TriggerResolutionChange(
BadQualityMetric dropframe_lowqp, int num_second, int initial_framerate) {
BadQualityMetric dropframe_lowqp,
int num_second,
int initial_framerate) {
QualityScalerTest::Resolution res;
res.framerate = initial_framerate;
qs_.OnEncodeFrame(input_frame_);
@ -288,7 +292,9 @@ QualityScalerTest::Resolution QualityScalerTest::TriggerResolutionChange(
}
void QualityScalerTest::VerifyQualityAdaptation(
int initial_framerate, int seconds, bool expect_spatial_resize,
int initial_framerate,
int seconds,
bool expect_spatial_resize,
bool expect_framerate_reduction) {
const int kDisabledBadQpThreshold = kMaxQp + 1;
qs_.Init(kMaxQp / QualityScaler::kDefaultLowQpDenominator,
@ -298,8 +304,8 @@ void QualityScalerTest::VerifyQualityAdaptation(
int init_height = qs_.GetScaledResolution().height;
// Test reducing framerate by dropping frame continuously.
QualityScalerTest::Resolution res = TriggerResolutionChange(
kDropFrame, seconds, initial_framerate);
QualityScalerTest::Resolution res =
TriggerResolutionChange(kDropFrame, seconds, initial_framerate);
if (expect_framerate_reduction) {
EXPECT_LT(res.framerate, initial_framerate);

View File

@ -43,12 +43,12 @@ static void VP8LoadNewBytes(VP8BitReader* const br) {
const uint32_t in_bits = *(const uint32_t*)(br->buf_);
br->buf_ += BITS >> 3;
#if defined(WEBRTC_ARCH_BIG_ENDIAN)
bits = static_cast<uint32_t>(in_bits);
if (BITS != 8 * sizeof(uint32_t))
bits >>= (8 * sizeof(uint32_t) - BITS);
bits = static_cast<uint32_t>(in_bits);
if (BITS != 8 * sizeof(uint32_t))
bits >>= (8 * sizeof(uint32_t) - BITS);
#else
bits = BSwap32(in_bits);
bits >>= 32 - BITS;
bits = BSwap32(in_bits);
bits >>= 32 - BITS;
#endif
br->value_ = bits | (br->value_ << BITS);
br->bits_ += BITS;
@ -60,12 +60,12 @@ static void VP8LoadNewBytes(VP8BitReader* const br) {
static void VP8InitBitReader(VP8BitReader* const br,
const uint8_t* const start,
const uint8_t* const end) {
br->range_ = 255 - 1;
br->buf_ = start;
br->range_ = 255 - 1;
br->buf_ = start;
br->buf_end_ = end;
br->value_ = 0;
br->bits_ = -8; // To load the very first 8bits.
br->eof_ = 0;
br->value_ = 0;
br->bits_ = -8; // To load the very first 8bits.
br->eof_ = 0;
VP8LoadNewBytes(br);
}
@ -122,7 +122,7 @@ static void ParseSegmentHeader(VP8BitReader* br) {
int s;
VP8Get(br);
for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
VP8Get(br) ? VP8GetSignedValue(br, 7) : 0;
VP8Get(br) ? VP8GetSignedValue(br, 7) : 0;
}
for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
VP8Get(br) ? VP8GetSignedValue(br, 6) : 0;

View File

@ -28,46 +28,34 @@ enum {
typedef struct VP8BitReader VP8BitReader;
struct VP8BitReader {
// Boolean decoder.
uint32_t value_; // Current value.
uint32_t range_; // Current range minus 1. In [127, 254] interval.
int bits_; // Number of valid bits left.
uint32_t value_; // Current value.
uint32_t range_; // Current range minus 1. In [127, 254] interval.
int bits_; // Number of valid bits left.
// Read buffer.
const uint8_t* buf_; // Next byte to be read.
const uint8_t* buf_end_; // End of read buffer.
int eof_; // True if input is exhausted.
const uint8_t* buf_; // Next byte to be read.
const uint8_t* buf_end_; // End of read buffer.
int eof_; // True if input is exhausted.
};
const uint8_t kVP8Log2Range[128] = {
7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0
};
7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0};
// range = ((range - 1) << kVP8Log2Range[range]) + 1
const uint8_t kVP8NewRange[128] = {
127, 127, 191, 127, 159, 191, 223, 127,
143, 159, 175, 191, 207, 223, 239, 127,
135, 143, 151, 159, 167, 175, 183, 191,
199, 207, 215, 223, 231, 239, 247, 127,
131, 135, 139, 143, 147, 151, 155, 159,
163, 167, 171, 175, 179, 183, 187, 191,
195, 199, 203, 207, 211, 215, 219, 223,
227, 231, 235, 239, 243, 247, 251, 127,
129, 131, 133, 135, 137, 139, 141, 143,
145, 147, 149, 151, 153, 155, 157, 159,
161, 163, 165, 167, 169, 171, 173, 175,
177, 179, 181, 183, 185, 187, 189, 191,
193, 195, 197, 199, 201, 203, 205, 207,
209, 211, 213, 215, 217, 219, 221, 223,
225, 227, 229, 231, 233, 235, 237, 239,
241, 243, 245, 247, 249, 251, 253, 127
};
127, 127, 191, 127, 159, 191, 223, 127, 143, 159, 175, 191, 207, 223, 239,
127, 135, 143, 151, 159, 167, 175, 183, 191, 199, 207, 215, 223, 231, 239,
247, 127, 131, 135, 139, 143, 147, 151, 155, 159, 163, 167, 171, 175, 179,
183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239,
243, 247, 251, 127, 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149,
151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179,
181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209,
211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239,
241, 243, 245, 247, 249, 251, 253, 127};
// Gets the QP, QP range: [0, 127].
// Returns true on success, false otherwise.

View File

@ -8,33 +8,33 @@
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/video_coding/video_coding_impl.h"
#include <algorithm>
#include "webrtc/common_types.h"
#include "webrtc/common_video/libyuv/include/webrtc_libyuv.h"
#include "webrtc/modules/video_coding/include/video_codec_interface.h"
#include "webrtc/modules/video_coding/encoded_frame.h"
#include "webrtc/modules/video_coding/jitter_buffer.h"
#include "webrtc/modules/video_coding/packet.h"
#include "webrtc/modules/video_coding/video_coding_impl.h"
#include "webrtc/system_wrappers/include/clock.h"
namespace webrtc {
namespace vcm {
int64_t
VCMProcessTimer::Period() const {
return _periodMs;
int64_t VCMProcessTimer::Period() const {
return _periodMs;
}
int64_t
VCMProcessTimer::TimeUntilProcess() const {
const int64_t time_since_process = _clock->TimeInMilliseconds() - _latestMs;
const int64_t time_until_process = _periodMs - time_since_process;
return std::max<int64_t>(time_until_process, 0);
int64_t VCMProcessTimer::TimeUntilProcess() const {
const int64_t time_since_process = _clock->TimeInMilliseconds() - _latestMs;
const int64_t time_until_process = _periodMs - time_since_process;
return std::max<int64_t>(time_until_process, 0);
}
void
VCMProcessTimer::Processed() {
_latestMs = _clock->TimeInMilliseconds();
void VCMProcessTimer::Processed() {
_latestMs = _clock->TimeInMilliseconds();
}
} // namespace vcm
@ -59,8 +59,8 @@ class EncodedImageCallbackWrapper : public EncodedImageCallback {
const RTPFragmentationHeader* fragmentation) {
CriticalSectionScoped cs(cs_.get());
if (callback_)
return callback_->Encoded(
encoded_image, codec_specific_info, fragmentation);
return callback_->Encoded(encoded_image, codec_specific_info,
fragmentation);
return 0;
}
@ -84,9 +84,7 @@ class VideoCodingModuleImpl : public VideoCodingModule {
receiver_(clock, event_factory),
own_event_factory_(owns_event_factory ? event_factory : NULL) {}
virtual ~VideoCodingModuleImpl() {
own_event_factory_.reset();
}
virtual ~VideoCodingModuleImpl() { own_event_factory_.reset(); }
int64_t TimeUntilNextProcess() override {
int64_t sender_time = sender_.TimeUntilNextProcess();
@ -321,9 +319,8 @@ VideoCodingModule* VideoCodingModule::Create(
encoder_rate_observer, qm_settings_callback);
}
VideoCodingModule* VideoCodingModule::Create(
Clock* clock,
EventFactory* event_factory) {
VideoCodingModule* VideoCodingModule::Create(Clock* clock,
EventFactory* event_factory) {
assert(clock);
assert(event_factory);
return new VideoCodingModuleImpl(clock, event_factory, false, nullptr,

View File

@ -47,9 +47,7 @@ class VCMRobustnessTest : public ::testing::Test {
vcm_->RegisterExternalDecoder(&decoder_, video_codec_.plType);
}
virtual void TearDown() {
VideoCodingModule::Destroy(vcm_);
}
virtual void TearDown() { VideoCodingModule::Destroy(vcm_); }
void InsertPacket(uint32_t timestamp,
uint16_t seq_no,
@ -87,19 +85,17 @@ TEST_F(VCMRobustnessTest, TestHardNack) {
.With(Args<0, 1>(ElementsAre(6, 7)))
.Times(1);
for (int ts = 0; ts <= 6000; ts += 3000) {
EXPECT_CALL(decoder_, Decode(AllOf(Field(&EncodedImage::_timeStamp, ts),
Field(&EncodedImage::_length,
kPayloadLen * 3),
Field(&EncodedImage::_completeFrame,
true)),
false, _, _, _))
EXPECT_CALL(decoder_,
Decode(AllOf(Field(&EncodedImage::_timeStamp, ts),
Field(&EncodedImage::_length, kPayloadLen * 3),
Field(&EncodedImage::_completeFrame, true)),
false, _, _, _))
.Times(1)
.InSequence(s);
}
ASSERT_EQ(VCM_OK, vcm_->SetReceiverRobustnessMode(
VideoCodingModule::kHardNack,
kNoErrors));
VideoCodingModule::kHardNack, kNoErrors));
InsertPacket(0, 0, true, false, kVideoFrameKey);
InsertPacket(0, 1, false, false, kVideoFrameKey);
@ -136,14 +132,11 @@ TEST_F(VCMRobustnessTest, TestHardNack) {
}
TEST_F(VCMRobustnessTest, TestHardNackNoneDecoded) {
EXPECT_CALL(request_callback_, ResendPackets(_, _))
.Times(0);
EXPECT_CALL(frame_type_callback_, RequestKeyFrame())
.Times(1);
EXPECT_CALL(request_callback_, ResendPackets(_, _)).Times(0);
EXPECT_CALL(frame_type_callback_, RequestKeyFrame()).Times(1);
ASSERT_EQ(VCM_OK, vcm_->SetReceiverRobustnessMode(
VideoCodingModule::kHardNack,
kNoErrors));
VideoCodingModule::kHardNack, kNoErrors));
InsertPacket(3000, 3, true, false, kVideoFrameDelta);
InsertPacket(3000, 4, false, false, kVideoFrameDelta);
@ -166,46 +159,43 @@ TEST_F(VCMRobustnessTest, TestModeNoneWithErrors) {
.With(Args<0, 1>(ElementsAre(4)))
.Times(0);
EXPECT_CALL(decoder_, Copy())
.Times(0);
EXPECT_CALL(decoderCopy_, Copy())
.Times(0);
EXPECT_CALL(decoder_, Copy()).Times(0);
EXPECT_CALL(decoderCopy_, Copy()).Times(0);
// Decode operations
EXPECT_CALL(decoder_, Decode(AllOf(Field(&EncodedImage::_timeStamp, 0),
Field(&EncodedImage::_completeFrame,
true)),
false, _, _, _))
.Times(1)
.InSequence(s1);
EXPECT_CALL(decoder_, Decode(AllOf(Field(&EncodedImage::_timeStamp, 3000),
Field(&EncodedImage::_completeFrame,
false)),
false, _, _, _))
.Times(1)
.InSequence(s1);
EXPECT_CALL(decoder_, Decode(AllOf(Field(&EncodedImage::_timeStamp, 6000),
Field(&EncodedImage::_completeFrame,
true)),
false, _, _, _))
.Times(1)
.InSequence(s1);
EXPECT_CALL(decoder_, Decode(AllOf(Field(&EncodedImage::_timeStamp, 9000),
Field(&EncodedImage::_completeFrame,
true)),
false, _, _, _))
.Times(1)
.InSequence(s1);
EXPECT_CALL(decoder_,
Decode(AllOf(Field(&EncodedImage::_timeStamp, 0),
Field(&EncodedImage::_completeFrame, true)),
false, _, _, _))
.Times(1)
.InSequence(s1);
EXPECT_CALL(decoder_,
Decode(AllOf(Field(&EncodedImage::_timeStamp, 3000),
Field(&EncodedImage::_completeFrame, false)),
false, _, _, _))
.Times(1)
.InSequence(s1);
EXPECT_CALL(decoder_,
Decode(AllOf(Field(&EncodedImage::_timeStamp, 6000),
Field(&EncodedImage::_completeFrame, true)),
false, _, _, _))
.Times(1)
.InSequence(s1);
EXPECT_CALL(decoder_,
Decode(AllOf(Field(&EncodedImage::_timeStamp, 9000),
Field(&EncodedImage::_completeFrame, true)),
false, _, _, _))
.Times(1)
.InSequence(s1);
ASSERT_EQ(VCM_OK, vcm_->SetReceiverRobustnessMode(
VideoCodingModule::kNone,
kWithErrors));
ASSERT_EQ(VCM_OK, vcm_->SetReceiverRobustnessMode(VideoCodingModule::kNone,
kWithErrors));
InsertPacket(0, 0, true, false, kVideoFrameKey);
InsertPacket(0, 1, false, false, kVideoFrameKey);
InsertPacket(0, 2, false, true, kVideoFrameKey);
EXPECT_EQ(VCM_OK, vcm_->Decode(33)); // Decode timestamp 0.
EXPECT_EQ(VCM_OK, vcm_->Process()); // Expect no NACK list.
EXPECT_EQ(VCM_OK, vcm_->Process()); // Expect no NACK list.
clock_->AdvanceTimeMilliseconds(33);
InsertPacket(3000, 3, true, false, kVideoFrameDelta);
@ -223,7 +213,7 @@ TEST_F(VCMRobustnessTest, TestModeNoneWithErrors) {
clock_->AdvanceTimeMilliseconds(10);
EXPECT_EQ(VCM_OK, vcm_->Decode(23)); // Decode timestamp 6000 complete.
EXPECT_EQ(VCM_OK, vcm_->Process()); // Expect no NACK list.
EXPECT_EQ(VCM_OK, vcm_->Process()); // Expect no NACK list.
clock_->AdvanceTimeMilliseconds(23);
InsertPacket(3000, 4, false, false, kVideoFrameDelta);

View File

@ -8,12 +8,12 @@
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_types.h"
#include <algorithm> // std::max
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/common_types.h"
#include "webrtc/common_video/libyuv/include/webrtc_libyuv.h"
#include "webrtc/modules/video_coding/include/video_codec_interface.h"
#include "webrtc/modules/video_coding/encoded_frame.h"
@ -126,14 +126,10 @@ int32_t VideoSender::RegisterSendCodec(const VideoCodec* sendCodec,
_nextFrameTypes.resize(VCM_MAX(sendCodec->numberOfSimulcastStreams, 1),
kVideoFrameDelta);
_mediaOpt.SetEncodingData(sendCodec->codecType,
sendCodec->maxBitrate * 1000,
sendCodec->startBitrate * 1000,
sendCodec->width,
sendCodec->height,
sendCodec->maxFramerate,
numLayers,
maxPayloadSize);
_mediaOpt.SetEncodingData(sendCodec->codecType, sendCodec->maxBitrate * 1000,
sendCodec->startBitrate * 1000, sendCodec->width,
sendCodec->height, sendCodec->maxFramerate,
numLayers, maxPayloadSize);
return VCM_OK;
}
@ -158,8 +154,8 @@ VideoCodecType VideoSender::SendCodecBlocking() const {
// Register an external decoder object.
// This can not be used together with external decoder callbacks.
void VideoSender::RegisterExternalEncoder(VideoEncoder* externalEncoder,
uint8_t payloadType,
bool internalSource /*= false*/) {
uint8_t payloadType,
bool internalSource /*= false*/) {
RTC_DCHECK(main_thread_.CalledOnValidThread());
rtc::CritScope lock(&send_crit_);
@ -174,8 +170,8 @@ void VideoSender::RegisterExternalEncoder(VideoEncoder* externalEncoder,
}
return;
}
_codecDataBase.RegisterExternalEncoder(
externalEncoder, payloadType, internalSource);
_codecDataBase.RegisterExternalEncoder(externalEncoder, payloadType,
internalSource);
}
// Get encode bitrate

View File

@ -41,9 +41,7 @@ using webrtc::test::FrameGenerator;
namespace webrtc {
namespace vcm {
namespace {
enum {
kMaxNumberOfTemporalLayers = 3
};
enum { kMaxNumberOfTemporalLayers = 3 };
struct Vp8StreamInfo {
float framerate_fps[kMaxNumberOfTemporalLayers];
@ -87,7 +85,7 @@ class EmptyFrameGenerator : public FrameGenerator {
class PacketizationCallback : public VCMPacketizationCallback {
public:
PacketizationCallback(Clock* clock)
explicit PacketizationCallback(Clock* clock)
: clock_(clock), start_time_ms_(clock_->TimeInMilliseconds()) {}
virtual ~PacketizationCallback() {}
@ -211,16 +209,12 @@ class TestVideoSenderWithMockEncoder : public TestVideoSender {
memset(&settings_, 0, sizeof(settings_));
EXPECT_EQ(0, VideoCodingModule::Codec(kVideoCodecVP8, &settings_));
settings_.numberOfSimulcastStreams = kNumberOfStreams;
ConfigureStream(kDefaultWidth / 4,
kDefaultHeight / 4,
100,
ConfigureStream(kDefaultWidth / 4, kDefaultHeight / 4, 100,
&settings_.simulcastStream[0]);
ConfigureStream(kDefaultWidth / 2,
kDefaultHeight / 2,
500,
ConfigureStream(kDefaultWidth / 2, kDefaultHeight / 2, 500,
&settings_.simulcastStream[1]);
ConfigureStream(
kDefaultWidth, kDefaultHeight, 1200, &settings_.simulcastStream[2]);
ConfigureStream(kDefaultWidth, kDefaultHeight, 1200,
&settings_.simulcastStream[2]);
settings_.plType = kUnusedPayloadType; // Use the mocked encoder.
generator_.reset(
new EmptyFrameGenerator(settings_.width, settings_.height));
@ -244,12 +238,11 @@ class TestVideoSenderWithMockEncoder : public TestVideoSender {
assert(stream < kNumberOfStreams);
std::vector<FrameType> frame_types(kNumberOfStreams, kVideoFrameDelta);
frame_types[stream] = kVideoFrameKey;
EXPECT_CALL(
encoder_,
Encode(_,
_,
Pointee(ElementsAreArray(&frame_types[0], frame_types.size()))))
.Times(1).WillRepeatedly(Return(0));
EXPECT_CALL(encoder_,
Encode(_, _, Pointee(ElementsAreArray(&frame_types[0],
frame_types.size()))))
.Times(1)
.WillRepeatedly(Return(0));
}
static void ConfigureStream(int width,