Create QuicTransportChannel

This new class allows usage of a QuicSession to establish a QUIC handshake.

BUG=

Review URL: https://codereview.webrtc.org/1721673004

Cr-Commit-Position: refs/heads/master@{#11873}
This commit is contained in:
mikescarlett
2016-03-04 09:55:02 -08:00
committed by Commit bot
parent a2f7798ec2
commit 6459f84766
5 changed files with 1323 additions and 0 deletions

View File

@ -107,6 +107,8 @@
'quic/quicconnectionhelper.h',
'quic/quicsession.cc',
'quic/quicsession.h',
'quic/quictransportchannel.cc',
'quic/quictransportchannel.h',
'quic/reliablequicstream.cc',
'quic/reliablequicstream.h',
],

View File

@ -41,6 +41,7 @@
'sources': [
'quic/quicconnectionhelper_unittest.cc',
'quic/quicsession_unittest.cc',
'quic/quictransportchannel_unittest.cc',
'quic/reliablequicstream_unittest.cc',
],
}],

View File

@ -0,0 +1,552 @@
/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/p2p/quic/quictransportchannel.h"
#include <utility>
#include "net/quic/crypto/proof_source.h"
#include "net/quic/crypto/proof_verifier.h"
#include "net/quic/crypto/quic_crypto_client_config.h"
#include "net/quic/crypto/quic_crypto_server_config.h"
#include "net/quic/quic_connection.h"
#include "net/quic/quic_crypto_client_stream.h"
#include "net/quic/quic_crypto_server_stream.h"
#include "net/quic/quic_protocol.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/helpers.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/socket.h"
#include "webrtc/base/thread.h"
#include "webrtc/p2p/base/common.h"
namespace {
// QUIC public header constants for net::QuicConnection. These are arbitrary
// given that |channel_| only receives packets specific to this channel,
// in which case we already know the QUIC packets have the correct destination.
const net::QuicConnectionId kConnectionId = 0;
const net::IPAddressNumber kConnectionIpAddress(net::kIPv4AddressSize, 0);
const net::IPEndPoint kConnectionIpEndpoint(kConnectionIpAddress, 0);
// Arbitrary server port number for net::QuicCryptoClientConfig.
const int kQuicServerPort = 0;
// QUIC connection timeout. This is large so that |channel_| can
// be responsible for connection timeout.
const int kIdleConnectionStateLifetime = 1000; // seconds
// Length of HKDF input keying material, equal to its number of bytes.
// https://tools.ietf.org/html/rfc5869#section-2.2.
// TODO(mikescarlett): Verify that input keying material length is correct.
const size_t kInputKeyingMaterialLength = 32;
// We don't pull the RTP constants from rtputils.h, to avoid a layer violation.
const size_t kMinRtpPacketLen = 12;
bool IsRtpPacket(const char* data, size_t len) {
const uint8_t* u = reinterpret_cast<const uint8_t*>(data);
return (len >= kMinRtpPacketLen && (u[0] & 0xC0) == 0x80);
}
// Function for detecting QUIC packets based off
// https://tools.ietf.org/html/draft-tsvwg-quic-protocol-02#section-6.
const size_t kMinQuicPacketLen = 2;
bool IsQuicPacket(const char* data, size_t len) {
const uint8_t* u = reinterpret_cast<const uint8_t*>(data);
return (len >= kMinQuicPacketLen && (u[0] & 0x80) == 0);
}
// Used by QuicCryptoServerConfig to provide dummy proof credentials.
// TODO(mikescarlett): Remove when secure P2P QUIC handshake is possible.
class DummyProofSource : public net::ProofSource {
public:
DummyProofSource() {}
~DummyProofSource() override {}
// ProofSource override.
bool GetProof(const net::IPAddressNumber& server_ip,
const std::string& hostname,
const std::string& server_config,
bool ecdsa_ok,
const std::vector<std::string>** out_certs,
std::string* out_signature,
std::string* out_leaf_cert_sct) override {
LOG(INFO) << "GetProof() providing dummy credentials for insecure QUIC";
std::vector<std::string>* certs = new std::vector<std::string>();
certs->push_back("Dummy cert");
std::string signature("Dummy signature");
*out_certs = certs;
*out_signature = signature;
return true;
}
};
// Used by QuicCryptoClientConfig to ignore the peer's credentials
// and establish an insecure QUIC connection.
// TODO(mikescarlett): Remove when secure P2P QUIC handshake is possible.
class InsecureProofVerifier : public net::ProofVerifier {
public:
InsecureProofVerifier() {}
~InsecureProofVerifier() override {}
// ProofVerifier override.
net::QuicAsyncStatus VerifyProof(
const std::string& hostname,
const std::string& server_config,
const std::vector<std::string>& certs,
const std::string& cert_sct,
const std::string& signature,
const net::ProofVerifyContext* verify_context,
std::string* error_details,
scoped_ptr<net::ProofVerifyDetails>* verify_details,
net::ProofVerifierCallback* callback) override {
LOG(INFO) << "VerifyProof() ignoring credentials and returning success";
return net::QUIC_SUCCESS;
}
};
} // namespace
namespace cricket {
QuicTransportChannel::QuicTransportChannel(TransportChannelImpl* channel)
: TransportChannelImpl(channel->transport_name(), channel->component()),
worker_thread_(rtc::Thread::Current()),
channel_(channel),
helper_(worker_thread_) {
channel_->SignalWritableState.connect(this,
&QuicTransportChannel::OnWritableState);
channel_->SignalReadPacket.connect(this, &QuicTransportChannel::OnReadPacket);
channel_->SignalSentPacket.connect(this, &QuicTransportChannel::OnSentPacket);
channel_->SignalReadyToSend.connect(this,
&QuicTransportChannel::OnReadyToSend);
channel_->SignalGatheringState.connect(
this, &QuicTransportChannel::OnGatheringState);
channel_->SignalCandidateGathered.connect(
this, &QuicTransportChannel::OnCandidateGathered);
channel_->SignalRoleConflict.connect(this,
&QuicTransportChannel::OnRoleConflict);
channel_->SignalRouteChange.connect(this,
&QuicTransportChannel::OnRouteChange);
channel_->SignalConnectionRemoved.connect(
this, &QuicTransportChannel::OnConnectionRemoved);
channel_->SignalReceivingState.connect(
this, &QuicTransportChannel::OnReceivingState);
// Set the QUIC connection timeout.
config_.SetIdleConnectionStateLifetime(
net::QuicTime::Delta::FromSeconds(kIdleConnectionStateLifetime),
net::QuicTime::Delta::FromSeconds(kIdleConnectionStateLifetime));
// Set the bytes reserved for the QUIC connection ID to zero.
config_.SetBytesForConnectionIdToSend(0);
}
QuicTransportChannel::~QuicTransportChannel() {}
bool QuicTransportChannel::SetLocalCertificate(
const rtc::scoped_refptr<rtc::RTCCertificate>& certificate) {
if (!certificate) {
LOG_J(ERROR, this) << "No local certificate was supplied. Not doing QUIC.";
return false;
}
if (!local_certificate_) {
local_certificate_ = certificate;
return true;
}
if (certificate == local_certificate_) {
// This may happen during renegotiation.
LOG_J(INFO, this) << "Ignoring identical certificate";
return true;
}
LOG_J(ERROR, this) << "Local certificate of the QUIC connection already set. "
"Can't change the local certificate once it's active.";
return false;
}
rtc::scoped_refptr<rtc::RTCCertificate>
QuicTransportChannel::GetLocalCertificate() const {
return local_certificate_;
}
bool QuicTransportChannel::SetSslRole(rtc::SSLRole role) {
if (ssl_role_ && *ssl_role_ == role) {
LOG_J(WARNING, this) << "Ignoring SSL Role identical to current role.";
return true;
}
if (quic_state_ != QUIC_TRANSPORT_CONNECTED) {
ssl_role_ = rtc::Optional<rtc::SSLRole>(role);
return true;
}
LOG_J(ERROR, this)
<< "SSL Role can't be reversed after the session is setup.";
return false;
}
bool QuicTransportChannel::GetSslRole(rtc::SSLRole* role) const {
if (!ssl_role_) {
return false;
}
*role = *ssl_role_;
return true;
}
bool QuicTransportChannel::SetRemoteFingerprint(const std::string& digest_alg,
const uint8_t* digest,
size_t digest_len) {
if (digest_alg.empty()) {
RTC_DCHECK(!digest_len);
LOG_J(ERROR, this) << "Remote peer doesn't support digest algorithm.";
return false;
}
std::string remote_fingerprint_value(reinterpret_cast<const char*>(digest),
digest_len);
// Once we have the local certificate, the same remote fingerprint can be set
// multiple times. This may happen during renegotiation.
if (remote_fingerprint_ &&
remote_fingerprint_->value == remote_fingerprint_value &&
remote_fingerprint_->algorithm == digest_alg) {
LOG_J(INFO, this) << "Ignoring identical remote fingerprint and algorithm";
return true;
}
remote_fingerprint_ = rtc::Optional<RemoteFingerprint>(RemoteFingerprint());
remote_fingerprint_->value = remote_fingerprint_value;
remote_fingerprint_->algorithm = digest_alg;
return true;
}
bool QuicTransportChannel::ExportKeyingMaterial(const std::string& label,
const uint8_t* context,
size_t context_len,
bool use_context,
uint8_t* result,
size_t result_len) {
std::string quic_context(reinterpret_cast<const char*>(context), context_len);
std::string quic_result;
if (!quic_->ExportKeyingMaterial(label, quic_context, result_len,
&quic_result)) {
return false;
}
quic_result.copy(reinterpret_cast<char*>(result), result_len);
return true;
}
bool QuicTransportChannel::GetSrtpCryptoSuite(int* cipher) {
*cipher = rtc::SRTP_AES128_CM_SHA1_80;
return true;
}
// Called from upper layers to send a media packet.
int QuicTransportChannel::SendPacket(const char* data,
size_t size,
const rtc::PacketOptions& options,
int flags) {
if ((flags & PF_SRTP_BYPASS) && IsRtpPacket(data, size)) {
return channel_->SendPacket(data, size, options);
}
LOG(ERROR) << "Failed to send an invalid SRTP bypass packet using QUIC.";
return -1;
}
// The state transition logic here is as follows:
// - Before the QUIC handshake is complete, the QUIC channel is unwritable.
// - When |channel_| goes writable we start the QUIC handshake.
// - Once the QUIC handshake completes, the state is that of the
// |channel_| again.
void QuicTransportChannel::OnWritableState(TransportChannel* channel) {
ASSERT(rtc::Thread::Current() == worker_thread_);
ASSERT(channel == channel_);
LOG_J(VERBOSE, this)
<< "QuicTransportChannel: channel writable state changed to "
<< channel_->writable();
switch (quic_state_) {
case QUIC_TRANSPORT_NEW:
// Start the QUIC handshake when |channel_| is writable.
// This will fail if the SSL role or remote fingerprint are not set.
// Otherwise failure could result from network or QUIC errors.
MaybeStartQuic();
break;
case QUIC_TRANSPORT_CONNECTED:
// Note: SignalWritableState fired by set_writable.
set_writable(channel_->writable());
if (HasDataToWrite()) {
OnCanWrite();
}
break;
case QUIC_TRANSPORT_CONNECTING:
// This channel is not writable until the QUIC handshake finishes. It
// might have been write blocked.
if (HasDataToWrite()) {
OnCanWrite();
}
break;
case QUIC_TRANSPORT_CLOSED:
// TODO(mikescarlett): Allow the QUIC connection to be reset if it drops
// due to a non-failure.
break;
}
}
void QuicTransportChannel::OnReceivingState(TransportChannel* channel) {
ASSERT(rtc::Thread::Current() == worker_thread_);
ASSERT(channel == channel_);
LOG_J(VERBOSE, this)
<< "QuicTransportChannel: channel receiving state changed to "
<< channel_->receiving();
if (quic_state_ == QUIC_TRANSPORT_CONNECTED) {
// Note: SignalReceivingState fired by set_receiving.
set_receiving(channel_->receiving());
}
}
void QuicTransportChannel::OnReadPacket(TransportChannel* channel,
const char* data,
size_t size,
const rtc::PacketTime& packet_time,
int flags) {
ASSERT(rtc::Thread::Current() == worker_thread_);
ASSERT(channel == channel_);
ASSERT(flags == 0);
switch (quic_state_) {
case QUIC_TRANSPORT_NEW:
// This would occur if other peer is ready to start QUIC but this peer
// hasn't started QUIC.
LOG_J(INFO, this) << "Dropping packet received before QUIC started.";
break;
case QUIC_TRANSPORT_CONNECTING:
case QUIC_TRANSPORT_CONNECTED:
// We should only get QUIC or SRTP packets; STUN's already been demuxed.
// Is this potentially a QUIC packet?
if (IsQuicPacket(data, size)) {
if (!HandleQuicPacket(data, size)) {
LOG_J(ERROR, this) << "Failed to handle QUIC packet.";
return;
}
} else {
// If this is an RTP packet, signal upwards as a bypass packet.
if (!IsRtpPacket(data, size)) {
LOG_J(ERROR, this) << "Received unexpected non-QUIC, non-RTP packet.";
return;
}
SignalReadPacket(this, data, size, packet_time, PF_SRTP_BYPASS);
}
break;
case QUIC_TRANSPORT_CLOSED:
// This shouldn't be happening. Drop the packet.
break;
}
}
void QuicTransportChannel::OnSentPacket(TransportChannel* channel,
const rtc::SentPacket& sent_packet) {
ASSERT(rtc::Thread::Current() == worker_thread_);
SignalSentPacket(this, sent_packet);
}
void QuicTransportChannel::OnReadyToSend(TransportChannel* channel) {
if (writable()) {
SignalReadyToSend(this);
}
}
void QuicTransportChannel::OnGatheringState(TransportChannelImpl* channel) {
ASSERT(channel == channel_);
SignalGatheringState(this);
}
void QuicTransportChannel::OnCandidateGathered(TransportChannelImpl* channel,
const Candidate& c) {
ASSERT(channel == channel_);
SignalCandidateGathered(this, c);
}
void QuicTransportChannel::OnRoleConflict(TransportChannelImpl* channel) {
ASSERT(channel == channel_);
SignalRoleConflict(this);
}
void QuicTransportChannel::OnRouteChange(TransportChannel* channel,
const Candidate& candidate) {
ASSERT(channel == channel_);
SignalRouteChange(this, candidate);
}
void QuicTransportChannel::OnConnectionRemoved(TransportChannelImpl* channel) {
ASSERT(channel == channel_);
SignalConnectionRemoved(this);
}
bool QuicTransportChannel::MaybeStartQuic() {
if (!channel_->writable()) {
LOG_J(ERROR, this) << "Couldn't start QUIC handshake.";
return false;
}
if (!CreateQuicSession() || !StartQuicHandshake()) {
LOG_J(WARNING, this) << "Underlying channel is writable but cannot start "
"the QUIC handshake.";
return false;
}
// Verify connection is not closed due to QUIC bug or network failure.
// A closed connection should not happen since |channel_| is writable.
if (!quic_->connection()->connected()) {
LOG_J(ERROR, this) << "QUIC connection should not be closed if underlying "
"channel is writable.";
return false;
}
// Indicate that |quic_| is ready to receive QUIC packets.
set_quic_state(QUIC_TRANSPORT_CONNECTING);
return true;
}
bool QuicTransportChannel::CreateQuicSession() {
if (!ssl_role_ || !remote_fingerprint_) {
return false;
}
net::Perspective perspective = (*ssl_role_ == rtc::SSL_CLIENT)
? net::Perspective::IS_CLIENT
: net::Perspective::IS_SERVER;
bool owns_writer = false;
scoped_ptr<net::QuicConnection> connection(new net::QuicConnection(
kConnectionId, kConnectionIpEndpoint, &helper_, this, owns_writer,
perspective, net::QuicSupportedVersions()));
quic_.reset(new QuicSession(std::move(connection), config_));
quic_->SignalHandshakeComplete.connect(
this, &QuicTransportChannel::OnHandshakeComplete);
quic_->SignalConnectionClosed.connect(
this, &QuicTransportChannel::OnConnectionClosed);
return true;
}
bool QuicTransportChannel::StartQuicHandshake() {
if (*ssl_role_ == rtc::SSL_CLIENT) {
// Unique identifier for remote peer.
net::QuicServerId server_id(remote_fingerprint_->value, kQuicServerPort);
// Perform authentication of remote peer; owned by QuicCryptoClientConfig.
// TODO(mikescarlett): Actually verify proof.
net::ProofVerifier* proof_verifier = new InsecureProofVerifier();
quic_crypto_client_config_.reset(
new net::QuicCryptoClientConfig(proof_verifier));
net::QuicCryptoClientStream* crypto_stream =
new net::QuicCryptoClientStream(server_id, quic_.get(),
new net::ProofVerifyContext(),
quic_crypto_client_config_.get(), this);
quic_->StartClientHandshake(crypto_stream);
LOG_J(INFO, this) << "QuicTransportChannel: Started client handshake.";
} else {
RTC_DCHECK_EQ(*ssl_role_, rtc::SSL_SERVER);
// Provide credentials to remote peer; owned by QuicCryptoServerConfig.
// TODO(mikescarlett): Actually provide credentials.
net::ProofSource* proof_source = new DummyProofSource();
// Input keying material to HKDF, per http://tools.ietf.org/html/rfc5869.
// This is pseudorandom so that HKDF-Extract outputs a pseudorandom key,
// since QuicCryptoServerConfig does not use a salt value.
std::string source_address_token_secret;
if (!rtc::CreateRandomString(kInputKeyingMaterialLength,
&source_address_token_secret)) {
LOG_J(ERROR, this) << "Error generating input keying material for HKDF.";
return false;
}
quic_crypto_server_config_.reset(new net::QuicCryptoServerConfig(
source_address_token_secret, helper_.GetRandomGenerator(),
proof_source));
// Provide server with serialized config string to prove ownership.
net::QuicCryptoServerConfig::ConfigOptions options;
quic_crypto_server_config_->AddDefaultConfig(helper_.GetRandomGenerator(),
helper_.GetClock(), options);
net::QuicCryptoServerStream* crypto_stream =
new net::QuicCryptoServerStream(quic_crypto_server_config_.get(),
quic_.get());
quic_->StartServerHandshake(crypto_stream);
LOG_J(INFO, this) << "QuicTransportChannel: Started server handshake.";
}
return true;
}
bool QuicTransportChannel::HandleQuicPacket(const char* data, size_t size) {
ASSERT(rtc::Thread::Current() == worker_thread_);
return quic_->OnReadPacket(data, size);
}
net::WriteResult QuicTransportChannel::WritePacket(
const char* buffer,
size_t buf_len,
const net::IPAddressNumber& self_address,
const net::IPEndPoint& peer_address) {
// QUIC should never call this if IsWriteBlocked, but just in case...
if (IsWriteBlocked()) {
return net::WriteResult(net::WRITE_STATUS_BLOCKED, EWOULDBLOCK);
}
// TODO(mikescarlett): Figure out how to tell QUIC "I dropped your packet, but
// don't block" without the QUIC connection tearing itself down.
int sent = channel_->SendPacket(buffer, buf_len, rtc::PacketOptions());
int bytes_written = sent > 0 ? sent : 0;
return net::WriteResult(net::WRITE_STATUS_OK, bytes_written);
}
// TODO(mikescarlett): Implement check for whether |channel_| is currently
// write blocked so that |quic_| does not try to write packet. This is
// necessary because |channel_| can be writable yet write blocked and
// channel_->GetError() is not flushed when there is no error.
bool QuicTransportChannel::IsWriteBlocked() const {
return !channel_->writable();
}
void QuicTransportChannel::OnHandshakeComplete() {
set_quic_state(QUIC_TRANSPORT_CONNECTED);
set_writable(true);
// OnReceivingState might have been called before the QUIC channel was
// connected, in which case the QUIC channel is now receiving.
if (channel_->receiving()) {
set_receiving(true);
}
}
void QuicTransportChannel::OnConnectionClosed(net::QuicErrorCode error,
bool from_peer) {
LOG_J(INFO, this) << "Connection closed by " << (from_peer ? "other" : "this")
<< " peer "
<< "with QUIC error " << error;
// TODO(mikescarlett): Allow the QUIC session to be reset when the connection
// does not close due to failure.
set_quic_state(QUIC_TRANSPORT_CLOSED);
set_writable(false);
}
void QuicTransportChannel::OnProofValid(
const net::QuicCryptoClientConfig::CachedState& cached) {
LOG_J(INFO, this) << "Cached proof marked valid";
}
void QuicTransportChannel::OnProofVerifyDetailsAvailable(
const net::ProofVerifyDetails& verify_details) {
LOG_J(INFO, this) << "Proof verify details available from"
<< " QuicCryptoClientStream";
}
bool QuicTransportChannel::HasDataToWrite() const {
return quic_ && quic_->HasDataToWrite();
}
void QuicTransportChannel::OnCanWrite() {
RTC_DCHECK(quic_ != nullptr);
quic_->connection()->OnCanWrite();
}
void QuicTransportChannel::set_quic_state(QuicTransportState state) {
LOG_J(VERBOSE, this) << "set_quic_state from:" << quic_state_ << " to "
<< state;
quic_state_ = state;
}
} // namespace cricket

View File

@ -0,0 +1,280 @@
/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_P2P_QUIC_QUICTRANSPORTCHANNEL_H_
#define WEBRTC_P2P_QUIC_QUICTRANSPORTCHANNEL_H_
#include <string>
#include <vector>
#include "net/quic/quic_packet_writer.h"
#include "webrtc/base/optional.h"
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/p2p/base/transportchannelimpl.h"
#include "webrtc/p2p/quic/quicconnectionhelper.h"
#include "webrtc/p2p/quic/quicsession.h"
namespace cricket {
enum QuicTransportState {
// Haven't started QUIC handshake.
QUIC_TRANSPORT_NEW = 0,
// Started QUIC handshake.
QUIC_TRANSPORT_CONNECTING,
// Negotiated, and has an encrypted connection.
QUIC_TRANSPORT_CONNECTED,
// QUIC connection closed due to handshake failure or explicit shutdown.
QUIC_TRANSPORT_CLOSED,
};
// QuicTransportChannel uses the QUIC protocol to establish encryption with
// another peer, wrapping an existing TransportChannelImpl instance
// (e.g a P2PTransportChannel) responsible for connecting peers.
// Once the wrapped transport channel is connected, QuicTransportChannel
// negotiates the crypto handshake and establishes SRTP keying material.
//
// How it works:
//
// QuicTransportChannel {
// QuicSession* quic_;
// TransportChannelImpl* channel_;
// }
//
// - Data written to SendPacket() is passed directly to |channel_| if it is
// an SRTP packet with the PF_SRTP_BYPASS flag.
//
// - |quic_| passes outgoing packets to WritePacket(), which transfers them
// to |channel_| to be sent across the network.
//
// - Data which comes into QuicTransportChannel::OnReadPacket is checked to
// see if it is QUIC, and if it is, passed to |quic_|. SRTP packets are
// signaled upwards as bypass packets.
//
// - When the QUIC handshake is completed, quic_state() returns
// QUIC_TRANSPORT_CONNECTED and SRTP keying material can be exported.
//
// TODO(mikescarlett): Implement secure QUIC handshake, 0-RTT handshakes, and
// QUIC data streams.
class QuicTransportChannel : public TransportChannelImpl,
public net::QuicPacketWriter,
public net::QuicCryptoClientStream::ProofHandler {
public:
// |channel| - the TransportChannelImpl we are wrapping.
explicit QuicTransportChannel(TransportChannelImpl* channel);
~QuicTransportChannel() override;
// TransportChannel overrides.
// TODO(mikescarlett): Implement certificate authentication.
bool SetLocalCertificate(
const rtc::scoped_refptr<rtc::RTCCertificate>& certificate) override;
rtc::scoped_refptr<rtc::RTCCertificate> GetLocalCertificate() const override;
// TODO(mikescarlett): Implement fingerprint authentication.
bool SetRemoteFingerprint(const std::string& digest_alg,
const uint8_t* digest,
size_t digest_len) override;
// TODO(mikescarlett): Remove this DTLS-specific method when TransportChannel
// does not require defining it.
bool IsDtlsActive() const override { return true; }
// Sends a RTP packet if the PF_SRTP_BYPASS flag is set.
int SendPacket(const char* data,
size_t size,
const rtc::PacketOptions& options,
int flags) override;
// Sets up the ciphers to use for SRTP.
// TODO(mikescarlett): Use SRTP ciphers for negotiation.
bool SetSrtpCryptoSuites(const std::vector<int>& ciphers) override {
return true;
}
// Determines which SRTP cipher was negotiated.
// TODO(mikescarlett): Implement QUIC cipher negotiation. This currently
// returns SRTP_AES128_CM_SHA1_80.
bool GetSrtpCryptoSuite(int* cipher) override;
bool SetSslRole(rtc::SSLRole role) override;
bool GetSslRole(rtc::SSLRole* role) const override;
// Determines which SSL cipher was negotiated.
// TODO(mikescarlett): Implement QUIC cipher negotiation.
bool GetSslCipherSuite(int* cipher) override { return false; }
// Once QUIC is established (i.e., |quic_state_| is QUIC_TRANSPORT_CONNECTED),
// this extracts the keys negotiated during the QUIC handshake, for use
// in external encryption such as for extracting SRTP keys.
bool ExportKeyingMaterial(const std::string& label,
const uint8_t* context,
size_t context_len,
bool use_context,
uint8_t* result,
size_t result_len) override;
// TODO(mikescarlett): Remove this method once TransportChannel does not
// require defining it.
bool GetRemoteSSLCertificate(rtc::SSLCertificate** cert) const override {
return false;
}
// TransportChannelImpl overrides that we forward to the wrapped transport.
void SetIceRole(IceRole role) override { channel_->SetIceRole(role); }
IceRole GetIceRole() const override { return channel_->GetIceRole(); }
int SetOption(rtc::Socket::Option opt, int value) override {
return channel_->SetOption(opt, value);
}
bool GetOption(rtc::Socket::Option opt, int* value) override {
return channel_->GetOption(opt, value);
}
int GetError() override { return channel_->GetError(); }
bool GetStats(ConnectionInfos* infos) override {
return channel_->GetStats(infos);
}
const std::string SessionId() const override { return channel_->SessionId(); }
TransportChannelState GetState() const override {
return channel_->GetState();
}
void SetIceTiebreaker(uint64_t tiebreaker) override {
channel_->SetIceTiebreaker(tiebreaker);
}
void SetIceCredentials(const std::string& ice_ufrag,
const std::string& ice_pwd) override {
channel_->SetIceCredentials(ice_ufrag, ice_pwd);
}
void SetRemoteIceCredentials(const std::string& ice_ufrag,
const std::string& ice_pwd) override {
channel_->SetRemoteIceCredentials(ice_ufrag, ice_pwd);
}
void SetRemoteIceMode(IceMode mode) override {
channel_->SetRemoteIceMode(mode);
}
void MaybeStartGathering() override { channel_->MaybeStartGathering(); }
IceGatheringState gathering_state() const override {
return channel_->gathering_state();
}
void AddRemoteCandidate(const Candidate& candidate) override {
channel_->AddRemoteCandidate(candidate);
}
void SetIceConfig(const IceConfig& config) override {
channel_->SetIceConfig(config);
}
void Connect() override {
channel_->Connect();
}
// QuicPacketWriter overrides.
// Called from net::QuicConnection when |quic_| has packets to write.
net::WriteResult WritePacket(const char* buffer,
size_t buf_len,
const net::IPAddressNumber& self_address,
const net::IPEndPoint& peer_address) override;
// Whether QuicTransportChannel buffers data when unable to write. If this is
// set to false, then net::QuicConnection buffers unsent packets.
bool IsWriteBlockedDataBuffered() const override { return false; }
// Whether QuicTransportChannel is write blocked. If this returns true,
// outgoing QUIC packets are queued by net::QuicConnection until
// QuicTransportChannel::OnCanWrite() is called.
bool IsWriteBlocked() const override;
// Maximum size of the QUIC packet which can be written.
net::QuicByteCount GetMaxPacketSize(
const net::IPEndPoint& peer_address) const override {
return net::kMaxPacketSize;
}
// This method is not used -- call set_writable(bool writable) instead.
// TODO(miekscarlett): Remove this method once QuicPacketWriter does not
// require defining it.
void SetWritable() override {}
// QuicCryptoClientStream::ProofHandler overrides.
// Called by client crypto handshake when cached proof is marked valid.
void OnProofValid(
const net::QuicCryptoClientConfig::CachedState& cached) override;
// Called by the client crypto handshake when proof verification details
// become available, either because proof verification is complete, or when
// cached details are used.
void OnProofVerifyDetailsAvailable(
const net::ProofVerifyDetails& verify_details) override;
// Returns true if |quic_| has queued data which wasn't written due
// to |channel_| being write blocked.
bool HasDataToWrite() const;
// Writes queued data for |quic_| when |channel_| is no longer write blocked.
void OnCanWrite();
// Connectivity state of QuicTransportChannel.
QuicTransportState quic_state() const { return quic_state_; }
private:
// Fingerprint of remote peer.
struct RemoteFingerprint {
std::string value;
std::string algorithm;
};
// Callbacks for |channel_|.
void OnReadableState(TransportChannel* channel);
void OnWritableState(TransportChannel* channel);
void OnReadPacket(TransportChannel* channel,
const char* data,
size_t size,
const rtc::PacketTime& packet_time,
int flags);
void OnSentPacket(TransportChannel* channel,
const rtc::SentPacket& sent_packet);
void OnReadyToSend(TransportChannel* channel);
void OnReceivingState(TransportChannel* channel);
void OnGatheringState(TransportChannelImpl* channel);
void OnCandidateGathered(TransportChannelImpl* channel, const Candidate& c);
void OnRoleConflict(TransportChannelImpl* channel);
void OnRouteChange(TransportChannel* channel, const Candidate& candidate);
void OnConnectionRemoved(TransportChannelImpl* channel);
// Callbacks for |quic_|.
// Called when |quic_| has established the crypto handshake.
void OnHandshakeComplete();
// Called when |quic_| has closed the connection.
void OnConnectionClosed(net::QuicErrorCode error, bool from_peer);
// Called by OnReadPacket() when a QUIC packet is received.
bool HandleQuicPacket(const char* data, size_t size);
// Sets up the QUIC handshake.
bool MaybeStartQuic();
// Creates the QUIC connection and |quic_|.
bool CreateQuicSession();
// Creates the crypto stream and initializes the handshake.
bool StartQuicHandshake();
// Sets the QuicTransportChannel connectivity state.
void set_quic_state(QuicTransportState state);
// Everything should occur on this thread.
rtc::Thread* worker_thread_;
// Underlying channel which is responsible for connecting with the remote peer
// and sending/receiving packets across the network.
TransportChannelImpl* const channel_;
// Connectivity state of QuicTransportChannel.
QuicTransportState quic_state_ = QUIC_TRANSPORT_NEW;
// QUIC session which establishes the crypto handshake and converts data
// to/from QUIC packets.
rtc::scoped_ptr<QuicSession> quic_;
// Non-crypto config for |quic_|.
net::QuicConfig config_;
// Helper for net::QuicConnection that provides timing and
// random number generation.
QuicConnectionHelper helper_;
// This peer's role in the QUIC crypto handshake. SSL_CLIENT implies this peer
// initiates the handshake, while SSL_SERVER implies the remote peer initiates
// the handshake. This must be set before we start QUIC.
rtc::Optional<rtc::SSLRole> ssl_role_;
// Config for QUIC crypto client stream, used when |ssl_role_| is SSL_CLIENT.
rtc::scoped_ptr<net::QuicCryptoClientConfig> quic_crypto_client_config_;
// Config for QUIC crypto server stream, used when |ssl_role_| is SSL_SERVER.
rtc::scoped_ptr<net::QuicCryptoServerConfig> quic_crypto_server_config_;
// This peer's certificate.
rtc::scoped_refptr<rtc::RTCCertificate> local_certificate_;
// Fingerprint of the remote peer. This must be set before we start QUIC.
rtc::Optional<RemoteFingerprint> remote_fingerprint_;
RTC_DISALLOW_COPY_AND_ASSIGN(QuicTransportChannel);
};
} // namespace cricket
#endif // WEBRTC_P2P_QUIC_QUICTRANSPORTCHANNEL_H_

View File

@ -0,0 +1,488 @@
/*
* Copyright 2016 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/p2p/quic/quictransportchannel.h"
#include <set>
#include <string>
#include <vector>
#include "webrtc/base/common.h"
#include "webrtc/base/gunit.h"
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/base/sslidentity.h"
#include "webrtc/p2p/base/faketransportcontroller.h"
using cricket::ConnectionRole;
using cricket::IceRole;
using cricket::QuicTransportChannel;
using cricket::TransportChannel;
using cricket::TransportDescription;
// Timeout in milliseconds for asynchronous operations in unit tests.
static const int kTimeoutMs = 1000;
// Export keying material parameters.
static const char kExporterLabel[] = "label";
static const uint8_t kExporterContext[] = "context";
static const size_t kExporterContextLength = sizeof(kExporterContext);
static const size_t kOutputKeyLength = 20;
// Packet size for SRTP.
static const size_t kPacketSize = 100;
// Indicates ICE channel has no write error.
static const int kNoWriteError = 0;
// ICE parameters.
static const char kIceUfrag[] = "TESTICEUFRAG0001";
static const char kIcePwd[] = "TESTICEPWD00000000000001";
// QUIC packet parameters.
static const net::IPAddressNumber kIpAddress(net::kIPv4AddressSize, 0);
static const net::IPEndPoint kIpEndpoint(kIpAddress, 0);
// Detects incoming RTP packets.
static bool IsRtpLeadByte(uint8_t b) {
return (b & 0xC0) == 0x80;
}
// Maps SSL role to ICE connection role. The peer with a client role is assumed
// to be the one who initiates the connection.
static ConnectionRole SslRoleToConnectionRole(rtc::SSLRole ssl_role) {
return (ssl_role == rtc::SSL_CLIENT) ? cricket::CONNECTIONROLE_ACTIVE
: cricket::CONNECTIONROLE_PASSIVE;
}
// Allows cricket::FakeTransportChannel to simulate write blocked
// and write error states.
// TODO(mikescarlett): Add this functionality to cricket::FakeTransportChannel.
class FailableTransportChannel : public cricket::FakeTransportChannel {
public:
FailableTransportChannel(const std::string& name, int component)
: cricket::FakeTransportChannel(name, component), error_(kNoWriteError) {}
int GetError() override { return error_; }
void SetError(int error) { error_ = error; }
int SendPacket(const char* data,
size_t len,
const rtc::PacketOptions& options,
int flags) override {
if (error_ == kNoWriteError) {
return cricket::FakeTransportChannel::SendPacket(data, len, options,
flags);
}
return -1;
}
private:
int error_;
};
// Peer who establishes a handshake using a QuicTransportChannel, which wraps
// a FailableTransportChannel to simulate network connectivity and ICE
// negotiation.
class QuicTestPeer : public sigslot::has_slots<> {
public:
explicit QuicTestPeer(const std::string& name)
: name_(name),
bytes_sent_(0),
ice_channel_(name_, 0),
quic_channel_(&ice_channel_) {
quic_channel_.SignalReadPacket.connect(
this, &QuicTestPeer::OnTransportChannelReadPacket);
ice_channel_.SetAsync(true);
rtc::scoped_refptr<rtc::RTCCertificate> local_cert =
rtc::RTCCertificate::Create(rtc::scoped_ptr<rtc::SSLIdentity>(
rtc::SSLIdentity::Generate(name_, rtc::KT_DEFAULT)));
quic_channel_.SetLocalCertificate(local_cert);
local_fingerprint_.reset(CreateFingerprint(local_cert.get()));
}
// Connects |ice_channel_| to that of the other peer.
void Connect(QuicTestPeer* other_peer) {
ice_channel_.Connect();
other_peer->ice_channel_.Connect();
ice_channel_.SetDestination(&other_peer->ice_channel_);
}
// Disconnects |ice_channel_|.
void Disconnect() { ice_channel_.SetDestination(nullptr); }
// Generates ICE credentials and passes them to |quic_channel_|.
void SetIceParameters(IceRole local_ice_role,
ConnectionRole local_connection_role,
ConnectionRole remote_connection_role,
rtc::SSLFingerprint* remote_fingerprint) {
quic_channel_.SetIceRole(local_ice_role);
quic_channel_.SetIceTiebreaker(
(local_ice_role == cricket::ICEROLE_CONTROLLING) ? 1 : 2);
TransportDescription local_desc(
std::vector<std::string>(), kIceUfrag, kIcePwd, cricket::ICEMODE_FULL,
local_connection_role, local_fingerprint_.get());
TransportDescription remote_desc(
std::vector<std::string>(), kIceUfrag, kIcePwd, cricket::ICEMODE_FULL,
remote_connection_role, remote_fingerprint);
quic_channel_.SetIceCredentials(local_desc.ice_ufrag, local_desc.ice_pwd);
quic_channel_.SetRemoteIceCredentials(remote_desc.ice_ufrag,
remote_desc.ice_pwd);
}
// Creates fingerprint from certificate.
rtc::SSLFingerprint* CreateFingerprint(rtc::RTCCertificate* cert) {
std::string digest_algorithm;
bool get_digest_algorithm =
cert->ssl_certificate().GetSignatureDigestAlgorithm(&digest_algorithm);
if (!get_digest_algorithm || digest_algorithm.empty()) {
return nullptr;
}
scoped_ptr<rtc::SSLFingerprint> fingerprint(
rtc::SSLFingerprint::Create(digest_algorithm, cert->identity()));
if (digest_algorithm != rtc::DIGEST_SHA_256) {
return nullptr;
}
return fingerprint.release();
}
// Sends SRTP packet to the other peer via |quic_channel_|.
int SendSrtpPacket() {
char packet[kPacketSize];
packet[0] = 0x80; // Make the packet header look like RTP.
int rv = quic_channel_.SendPacket(
&packet[0], kPacketSize, rtc::PacketOptions(), cricket::PF_SRTP_BYPASS);
bytes_sent_ += rv;
return rv;
}
// Sends a non-SRTP packet with the PF_SRTP_BYPASS flag via |quic_channel_|.
int SendInvalidSrtpPacket() {
char packet[kPacketSize];
// Fill the packet with 0 to form an invalid SRTP packet.
memset(packet, 0, kPacketSize);
return quic_channel_.SendPacket(
&packet[0], kPacketSize, rtc::PacketOptions(), cricket::PF_SRTP_BYPASS);
}
// Sends an RTP packet to the other peer via |quic_channel_|, without the SRTP
// bypass flag.
int SendRtpPacket() {
char packet[kPacketSize];
packet[0] = 0x80; // Make the packet header look like RTP.
return quic_channel_.SendPacket(&packet[0], kPacketSize,
rtc::PacketOptions(), 0);
}
void ClearBytesSent() { bytes_sent_ = 0; }
void ClearBytesReceived() { bytes_received_ = 0; }
void SetWriteError(int error) { ice_channel_.SetError(error); }
size_t bytes_received() const { return bytes_received_; }
size_t bytes_sent() const { return bytes_sent_; }
FailableTransportChannel* ice_channel() { return &ice_channel_; }
QuicTransportChannel* quic_channel() { return &quic_channel_; }
rtc::scoped_ptr<rtc::SSLFingerprint>& local_fingerprint() {
return local_fingerprint_;
}
private:
// QUIC channel callback.
void OnTransportChannelReadPacket(TransportChannel* channel,
const char* data,
size_t size,
const rtc::PacketTime& packet_time,
int flags) {
bytes_received_ += size;
// Only SRTP packets should have the bypass flag set.
int expected_flags = IsRtpLeadByte(data[0]) ? cricket::PF_SRTP_BYPASS : 0;
ASSERT_EQ(expected_flags, flags);
}
std::string name_; // Channel name.
size_t bytes_sent_; // Bytes sent by QUIC channel.
size_t bytes_received_; // Bytes received by QUIC channel.
FailableTransportChannel ice_channel_; // Simulates an ICE channel.
QuicTransportChannel quic_channel_; // QUIC channel to test.
rtc::scoped_ptr<rtc::SSLFingerprint> local_fingerprint_;
};
class QuicTransportChannelTest : public testing::Test {
public:
QuicTransportChannelTest() : peer1_("P1"), peer2_("P2") {}
// Performs negotiation before QUIC handshake, then connects the fake
// transport channels of each peer. As a side effect, the QUIC channels
// start sending handshake messages. |peer1_| has a client role and |peer2_|
// has server role in the QUIC handshake.
void Connect() {
SetIceAndCryptoParameters(rtc::SSL_CLIENT, rtc::SSL_SERVER);
peer1_.Connect(&peer2_);
}
// Disconnects the fake transport channels.
void Disconnect() {
peer1_.Disconnect();
peer2_.Disconnect();
}
// Sets up ICE parameters and exchanges fingerprints before QUIC handshake.
void SetIceAndCryptoParameters(rtc::SSLRole peer1_ssl_role,
rtc::SSLRole peer2_ssl_role) {
peer1_.quic_channel()->SetSslRole(peer1_ssl_role);
peer2_.quic_channel()->SetSslRole(peer2_ssl_role);
rtc::scoped_ptr<rtc::SSLFingerprint>& peer1_fingerprint =
peer1_.local_fingerprint();
rtc::scoped_ptr<rtc::SSLFingerprint>& peer2_fingerprint =
peer2_.local_fingerprint();
peer1_.quic_channel()->SetRemoteFingerprint(
peer2_fingerprint->algorithm,
reinterpret_cast<const uint8_t*>(peer2_fingerprint->digest.data()),
peer2_fingerprint->digest.size());
peer2_.quic_channel()->SetRemoteFingerprint(
peer1_fingerprint->algorithm,
reinterpret_cast<const uint8_t*>(peer1_fingerprint->digest.data()),
peer1_fingerprint->digest.size());
ConnectionRole peer1_connection_role =
SslRoleToConnectionRole(peer1_ssl_role);
ConnectionRole peer2_connection_role =
SslRoleToConnectionRole(peer2_ssl_role);
peer1_.SetIceParameters(cricket::ICEROLE_CONTROLLED, peer1_connection_role,
peer2_connection_role, peer2_fingerprint.get());
peer2_.SetIceParameters(cricket::ICEROLE_CONTROLLING, peer2_connection_role,
peer1_connection_role, peer1_fingerprint.get());
}
// Checks if QUIC handshake is done.
bool quic_connected() {
return peer1_.quic_channel()->quic_state() ==
cricket::QUIC_TRANSPORT_CONNECTED &&
peer2_.quic_channel()->quic_state() ==
cricket::QUIC_TRANSPORT_CONNECTED;
}
// Checks if QUIC channels are writable.
bool quic_writable() {
return peer1_.quic_channel()->writable() &&
peer2_.quic_channel()->writable();
}
protected:
// QUIC peer with a client role, who initiates the QUIC handshake.
QuicTestPeer peer1_;
// QUIC peer with a server role, who responds to the client peer.
QuicTestPeer peer2_;
};
// Test that the QUIC channel passes ICE parameters to the underlying ICE
// channel.
TEST_F(QuicTransportChannelTest, ChannelSetupIce) {
SetIceAndCryptoParameters(rtc::SSL_CLIENT, rtc::SSL_SERVER);
FailableTransportChannel* channel1 = peer1_.ice_channel();
FailableTransportChannel* channel2 = peer2_.ice_channel();
EXPECT_EQ(cricket::ICEROLE_CONTROLLED, channel1->GetIceRole());
EXPECT_EQ(2u, channel1->IceTiebreaker());
EXPECT_EQ(kIceUfrag, channel1->ice_ufrag());
EXPECT_EQ(kIcePwd, channel1->ice_pwd());
EXPECT_EQ(cricket::ICEROLE_CONTROLLING, channel2->GetIceRole());
EXPECT_EQ(1u, channel2->IceTiebreaker());
}
// Test that export keying material generates identical keys for both peers
// after the QUIC handshake.
TEST_F(QuicTransportChannelTest, ExportKeyingMaterial) {
Connect();
ASSERT_TRUE_WAIT(quic_connected(), kTimeoutMs);
uint8_t key1[kOutputKeyLength];
uint8_t key2[kOutputKeyLength];
bool from_success = peer1_.quic_channel()->ExportKeyingMaterial(
kExporterLabel, kExporterContext, kExporterContextLength, true, key1,
kOutputKeyLength);
ASSERT_TRUE(from_success);
bool to_success = peer2_.quic_channel()->ExportKeyingMaterial(
kExporterLabel, kExporterContext, kExporterContextLength, true, key2,
kOutputKeyLength);
ASSERT_TRUE(to_success);
EXPECT_EQ(0, memcmp(key1, key2, sizeof(key1)));
}
// Test that the QUIC channel is not writable before the QUIC handshake.
TEST_F(QuicTransportChannelTest, NotWritableBeforeHandshake) {
Connect();
EXPECT_FALSE(quic_writable());
Disconnect();
EXPECT_FALSE(quic_writable());
Connect();
EXPECT_FALSE(quic_writable());
}
// Test that once handshake begins, QUIC is not writable until its completion.
TEST_F(QuicTransportChannelTest, QuicHandshake) {
Connect();
EXPECT_FALSE(quic_writable());
ASSERT_TRUE_WAIT(quic_connected(), kTimeoutMs);
EXPECT_TRUE(quic_writable());
}
// Test that Non-SRTP data is not sent using SendPacket(), regardless of QUIC
// channel state.
TEST_F(QuicTransportChannelTest, TransferNonSrtp) {
// Send data before ICE channel is connected.
peer1_.ClearBytesSent();
peer2_.ClearBytesReceived();
ASSERT_EQ(-1, peer1_.SendRtpPacket());
EXPECT_EQ(0u, peer1_.bytes_sent());
// Send data after ICE channel is connected, before QUIC handshake.
Connect();
peer1_.ClearBytesSent();
peer2_.ClearBytesReceived();
ASSERT_EQ(-1, peer1_.SendRtpPacket());
EXPECT_EQ(0u, peer1_.bytes_sent());
// Send data after QUIC handshake.
ASSERT_TRUE_WAIT(quic_connected(), kTimeoutMs);
peer1_.ClearBytesSent();
peer2_.ClearBytesReceived();
ASSERT_EQ(-1, peer1_.SendRtpPacket());
EXPECT_EQ(0u, peer1_.bytes_sent());
}
// Test that SRTP data is always be sent, regardless of QUIC channel state, when
// the ICE channel is connected.
TEST_F(QuicTransportChannelTest, TransferSrtp) {
// Send data after ICE channel is connected, before QUIC handshake.
Connect();
peer1_.ClearBytesSent();
peer2_.ClearBytesReceived();
ASSERT_EQ(kPacketSize, static_cast<size_t>(peer1_.SendSrtpPacket()));
EXPECT_EQ_WAIT(kPacketSize, peer2_.bytes_received(), kTimeoutMs);
EXPECT_EQ(kPacketSize, peer1_.bytes_sent());
ASSERT_TRUE_WAIT(quic_connected(), kTimeoutMs);
// Send data after QUIC handshake.
peer1_.ClearBytesSent();
peer2_.ClearBytesReceived();
ASSERT_EQ(kPacketSize, static_cast<size_t>(peer1_.SendSrtpPacket()));
EXPECT_EQ_WAIT(kPacketSize, peer2_.bytes_received(), kTimeoutMs);
EXPECT_EQ(kPacketSize, peer1_.bytes_sent());
}
// Test that invalid SRTP (non-SRTP data with
// PF_SRTP_BYPASS flag) fails to send with return value -1.
TEST_F(QuicTransportChannelTest, TransferInvalidSrtp) {
peer1_.ClearBytesSent();
peer2_.ClearBytesReceived();
EXPECT_EQ(-1, peer1_.SendInvalidSrtpPacket());
EXPECT_EQ(0u, peer2_.bytes_received());
Connect();
peer1_.ClearBytesSent();
peer2_.ClearBytesReceived();
EXPECT_EQ(-1, peer1_.SendInvalidSrtpPacket());
EXPECT_EQ(0u, peer2_.bytes_received());
}
// Test that QuicTransportChannel::WritePacket blocks when the ICE
// channel is not writable, and otherwise succeeds.
TEST_F(QuicTransportChannelTest, QuicWritePacket) {
peer1_.ice_channel()->Connect();
peer2_.ice_channel()->Connect();
peer1_.ice_channel()->SetDestination(peer2_.ice_channel());
std::string packet = "FAKEQUICPACKET";
// QUIC should be write blocked when the ICE channel is not writable.
peer1_.ice_channel()->SetWritable(false);
EXPECT_TRUE(peer1_.quic_channel()->IsWriteBlocked());
net::WriteResult write_blocked_result = peer1_.quic_channel()->WritePacket(
packet.data(), packet.size(), kIpAddress, kIpEndpoint);
EXPECT_EQ(net::WRITE_STATUS_BLOCKED, write_blocked_result.status);
EXPECT_EQ(EWOULDBLOCK, write_blocked_result.error_code);
// QUIC should ignore errors when the ICE channel is writable.
peer1_.ice_channel()->SetWritable(true);
EXPECT_FALSE(peer1_.quic_channel()->IsWriteBlocked());
peer1_.SetWriteError(EWOULDBLOCK);
net::WriteResult ignore_error_result = peer1_.quic_channel()->WritePacket(
packet.data(), packet.size(), kIpAddress, kIpEndpoint);
EXPECT_EQ(net::WRITE_STATUS_OK, ignore_error_result.status);
EXPECT_EQ(0, ignore_error_result.bytes_written);
peer1_.SetWriteError(kNoWriteError);
net::WriteResult no_error_result = peer1_.quic_channel()->WritePacket(
packet.data(), packet.size(), kIpAddress, kIpEndpoint);
EXPECT_EQ(net::WRITE_STATUS_OK, no_error_result.status);
EXPECT_EQ(static_cast<int>(packet.size()), no_error_result.bytes_written);
}
// Test that SSL roles can be reversed before QUIC handshake.
TEST_F(QuicTransportChannelTest, QuicRoleReversalBeforeQuic) {
EXPECT_TRUE(peer1_.quic_channel()->SetSslRole(rtc::SSL_SERVER));
EXPECT_TRUE(peer1_.quic_channel()->SetSslRole(rtc::SSL_CLIENT));
EXPECT_TRUE(peer1_.quic_channel()->SetSslRole(rtc::SSL_SERVER));
}
// Test that SSL roles cannot be reversed after the QUIC handshake. SetSslRole
// returns true if the current SSL role equals the proposed SSL role.
TEST_F(QuicTransportChannelTest, QuicRoleReversalAfterQuic) {
Connect();
ASSERT_TRUE_WAIT(quic_connected(), kTimeoutMs);
EXPECT_FALSE(peer1_.quic_channel()->SetSslRole(rtc::SSL_SERVER));
EXPECT_TRUE(peer1_.quic_channel()->SetSslRole(rtc::SSL_CLIENT));
EXPECT_FALSE(peer2_.quic_channel()->SetSslRole(rtc::SSL_CLIENT));
EXPECT_TRUE(peer2_.quic_channel()->SetSslRole(rtc::SSL_SERVER));
}
// Set the SSL role, then test that GetSslRole returns the same value.
TEST_F(QuicTransportChannelTest, SetGetSslRole) {
ASSERT_TRUE(peer1_.quic_channel()->SetSslRole(rtc::SSL_SERVER));
rtc::scoped_ptr<rtc::SSLRole> role(new rtc::SSLRole());
ASSERT_TRUE(peer1_.quic_channel()->GetSslRole(role.get()));
EXPECT_EQ(rtc::SSL_SERVER, *role);
}
// Test that after the QUIC handshake is complete, the QUIC handshake remains
// confirmed even if the ICE channel reconnects.
TEST_F(QuicTransportChannelTest, HandshakeConfirmedAfterReconnect) {
Connect();
ASSERT_TRUE_WAIT(quic_connected(), kTimeoutMs);
Disconnect();
EXPECT_TRUE(quic_connected());
Connect();
EXPECT_TRUE(quic_connected());
}
// Test that if the ICE channel becomes receiving after the QUIC channel is
// connected, then the QUIC channel becomes receiving.
TEST_F(QuicTransportChannelTest, IceReceivingAfterConnected) {
Connect();
ASSERT_TRUE_WAIT(quic_connected(), kTimeoutMs);
ASSERT_FALSE(peer1_.ice_channel()->receiving());
EXPECT_FALSE(peer1_.quic_channel()->receiving());
peer1_.ice_channel()->SetReceiving(true);
EXPECT_TRUE(peer1_.quic_channel()->receiving());
}
// Test that if the ICE channel becomes receiving before the QUIC channel is
// connected, then the QUIC channel becomes receiving.
TEST_F(QuicTransportChannelTest, IceReceivingBeforeConnected) {
Connect();
peer1_.ice_channel()->SetReceiving(true);
ASSERT_TRUE(peer1_.ice_channel()->receiving());
ASSERT_TRUE_WAIT(quic_connected(), kTimeoutMs);
EXPECT_TRUE(peer1_.quic_channel()->receiving());
}