Add aecdump support to audioproc_f

Originally landed here: https://codereview.webrtc.org/1409943002/
The transient suppression fix landed here: https://codereview.webrtc.org/1411423010/

TBR=mflodman

Review URL: https://codereview.webrtc.org/1432843002

Cr-Commit-Position: refs/heads/master@{#10722}
This commit is contained in:
aluebs
2015-11-20 00:11:53 -08:00
committed by Commit bot
parent ceb450b51d
commit b0ad43baa0
10 changed files with 465 additions and 160 deletions

View File

@ -13,6 +13,7 @@
#include <algorithm>
#include <cstdio>
#include <limits>
#include <sstream>
#include "webrtc/base/checks.h"
#include "webrtc/base/safe_conversions.h"
@ -37,9 +38,17 @@ class ReadableWavFile : public ReadableWav {
FILE* file_;
};
std::string WavFile::FormatAsString() const {
std::ostringstream s;
s << "Sample rate: " << sample_rate() << " Hz, Channels: " << num_channels()
<< ", Duration: "
<< (1.f * num_samples()) / (num_channels() * sample_rate()) << " s";
return s.str();
}
WavReader::WavReader(const std::string& filename)
: file_handle_(fopen(filename.c_str(), "rb")) {
RTC_CHECK(file_handle_ && "Could not open wav file for reading.");
RTC_CHECK(file_handle_) << "Could not open wav file for reading.";
ReadableWavFile readable(file_handle_);
WavFormat format;
@ -96,7 +105,7 @@ WavWriter::WavWriter(const std::string& filename, int sample_rate,
num_channels_(num_channels),
num_samples_(0),
file_handle_(fopen(filename.c_str(), "wb")) {
RTC_CHECK(file_handle_ && "Could not open wav file for writing.");
RTC_CHECK(file_handle_) << "Could not open wav file for writing.";
RTC_CHECK(CheckWavParameters(num_channels_, sample_rate_, kWavFormat,
kBytesPerSample, num_samples_));

View File

@ -29,6 +29,9 @@ class WavFile {
virtual int sample_rate() const = 0;
virtual int num_channels() const = 0;
virtual uint32_t num_samples() const = 0;
// Returns a human-readable string containing the audio format.
std::string FormatAsString() const;
};
// Simple C++ class for writing 16-bit PCM WAV files. All error handling is

View File

@ -128,7 +128,11 @@
'<(webrtc_root)/test/test.gyp:test_support',
'<(DEPTH)/third_party/gflags/gflags.gyp:gflags',
],
'sources': [ 'test/audioproc_float.cc', ],
'sources': [
'test/audio_file_processor.cc',
'test/audio_file_processor.h',
'test/audioproc_float.cc',
],
},
{
'target_name': 'unpack_aecdump',

View File

@ -0,0 +1,177 @@
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/test/audio_file_processor.h"
#include <algorithm>
#include "webrtc/base/checks.h"
#include "webrtc/modules/audio_processing/test/protobuf_utils.h"
using rtc::scoped_ptr;
using rtc::CheckedDivExact;
using std::vector;
using webrtc::audioproc::Event;
using webrtc::audioproc::Init;
using webrtc::audioproc::ReverseStream;
using webrtc::audioproc::Stream;
namespace webrtc {
namespace {
// Returns a StreamConfig corresponding to file.
StreamConfig GetStreamConfig(const WavFile& file) {
return StreamConfig(file.sample_rate(), file.num_channels());
}
// Returns a ChannelBuffer corresponding to file.
ChannelBuffer<float> GetChannelBuffer(const WavFile& file) {
return ChannelBuffer<float>(
CheckedDivExact(file.sample_rate(), AudioFileProcessor::kChunksPerSecond),
file.num_channels());
}
} // namespace
WavFileProcessor::WavFileProcessor(scoped_ptr<AudioProcessing> ap,
scoped_ptr<WavReader> in_file,
scoped_ptr<WavWriter> out_file)
: ap_(ap.Pass()),
in_buf_(GetChannelBuffer(*in_file)),
out_buf_(GetChannelBuffer(*out_file)),
input_config_(GetStreamConfig(*in_file)),
output_config_(GetStreamConfig(*out_file)),
buffer_reader_(in_file.Pass()),
buffer_writer_(out_file.Pass()) {}
bool WavFileProcessor::ProcessChunk() {
if (!buffer_reader_.Read(&in_buf_)) {
return false;
}
{
const auto st = ScopedTimer(mutable_proc_time());
RTC_CHECK_EQ(kNoErr,
ap_->ProcessStream(in_buf_.channels(), input_config_,
output_config_, out_buf_.channels()));
}
buffer_writer_.Write(out_buf_);
return true;
}
AecDumpFileProcessor::AecDumpFileProcessor(scoped_ptr<AudioProcessing> ap,
FILE* dump_file,
scoped_ptr<WavWriter> out_file)
: ap_(ap.Pass()),
dump_file_(dump_file),
out_buf_(GetChannelBuffer(*out_file)),
output_config_(GetStreamConfig(*out_file)),
buffer_writer_(out_file.Pass()) {
RTC_CHECK(dump_file_) << "Could not open dump file for reading.";
}
AecDumpFileProcessor::~AecDumpFileProcessor() {
fclose(dump_file_);
}
bool AecDumpFileProcessor::ProcessChunk() {
Event event_msg;
// Continue until we process our first Stream message.
do {
if (!ReadMessageFromFile(dump_file_, &event_msg)) {
return false;
}
if (event_msg.type() == Event::INIT) {
RTC_CHECK(event_msg.has_init());
HandleMessage(event_msg.init());
} else if (event_msg.type() == Event::STREAM) {
RTC_CHECK(event_msg.has_stream());
HandleMessage(event_msg.stream());
} else if (event_msg.type() == Event::REVERSE_STREAM) {
RTC_CHECK(event_msg.has_reverse_stream());
HandleMessage(event_msg.reverse_stream());
}
} while (event_msg.type() != Event::STREAM);
return true;
}
void AecDumpFileProcessor::HandleMessage(const Init& msg) {
RTC_CHECK(msg.has_sample_rate());
RTC_CHECK(msg.has_num_input_channels());
RTC_CHECK(msg.has_num_reverse_channels());
in_buf_.reset(new ChannelBuffer<float>(
CheckedDivExact(msg.sample_rate(), kChunksPerSecond),
msg.num_input_channels()));
const int reverse_sample_rate = msg.has_reverse_sample_rate()
? msg.reverse_sample_rate()
: msg.sample_rate();
reverse_buf_.reset(new ChannelBuffer<float>(
CheckedDivExact(reverse_sample_rate, kChunksPerSecond),
msg.num_reverse_channels()));
input_config_ = StreamConfig(msg.sample_rate(), msg.num_input_channels());
reverse_config_ =
StreamConfig(reverse_sample_rate, msg.num_reverse_channels());
const ProcessingConfig config = {
{input_config_, output_config_, reverse_config_, reverse_config_}};
RTC_CHECK_EQ(kNoErr, ap_->Initialize(config));
}
void AecDumpFileProcessor::HandleMessage(const Stream& msg) {
RTC_CHECK(!msg.has_input_data());
RTC_CHECK_EQ(in_buf_->num_channels(), msg.input_channel_size());
for (int i = 0; i < msg.input_channel_size(); ++i) {
RTC_CHECK_EQ(in_buf_->num_frames() * sizeof(*in_buf_->channels()[i]),
msg.input_channel(i).size());
std::memcpy(in_buf_->channels()[i], msg.input_channel(i).data(),
msg.input_channel(i).size());
}
{
const auto st = ScopedTimer(mutable_proc_time());
RTC_CHECK_EQ(kNoErr, ap_->set_stream_delay_ms(msg.delay()));
ap_->echo_cancellation()->set_stream_drift_samples(msg.drift());
if (msg.has_keypress()) {
ap_->set_stream_key_pressed(msg.keypress());
}
RTC_CHECK_EQ(kNoErr,
ap_->ProcessStream(in_buf_->channels(), input_config_,
output_config_, out_buf_.channels()));
}
buffer_writer_.Write(out_buf_);
}
void AecDumpFileProcessor::HandleMessage(const ReverseStream& msg) {
RTC_CHECK(!msg.has_data());
RTC_CHECK_EQ(reverse_buf_->num_channels(), msg.channel_size());
for (int i = 0; i < msg.channel_size(); ++i) {
RTC_CHECK_EQ(reverse_buf_->num_frames() * sizeof(*in_buf_->channels()[i]),
msg.channel(i).size());
std::memcpy(reverse_buf_->channels()[i], msg.channel(i).data(),
msg.channel(i).size());
}
{
const auto st = ScopedTimer(mutable_proc_time());
// TODO(ajm): This currently discards the processed output, which is needed
// for e.g. intelligibility enhancement.
RTC_CHECK_EQ(kNoErr, ap_->ProcessReverseStream(
reverse_buf_->channels(), reverse_config_,
reverse_config_, reverse_buf_->channels()));
}
}
} // namespace webrtc

View File

@ -0,0 +1,139 @@
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_TEST_AUDIO_FILE_PROCESSOR_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_TEST_AUDIO_FILE_PROCESSOR_H_
#include <algorithm>
#include <limits>
#include <vector>
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/common_audio/channel_buffer.h"
#include "webrtc/common_audio/wav_file.h"
#include "webrtc/modules/audio_processing/include/audio_processing.h"
#include "webrtc/modules/audio_processing/test/test_utils.h"
#include "webrtc/system_wrappers/include/tick_util.h"
#ifdef WEBRTC_ANDROID_PLATFORM_BUILD
#include "external/webrtc/webrtc/modules/audio_processing/debug.pb.h"
#else
#include "webrtc/audio_processing/debug.pb.h"
#endif
namespace webrtc {
// Holds a few statistics about a series of TickIntervals.
struct TickIntervalStats {
TickIntervalStats() : min(std::numeric_limits<int64_t>::max()) {}
TickInterval sum;
TickInterval max;
TickInterval min;
};
// Interface for processing an input file with an AudioProcessing instance and
// dumping the results to an output file.
class AudioFileProcessor {
public:
static const int kChunksPerSecond = 1000 / AudioProcessing::kChunkSizeMs;
virtual ~AudioFileProcessor() {}
// Processes one AudioProcessing::kChunkSizeMs of data from the input file and
// writes to the output file.
virtual bool ProcessChunk() = 0;
// Returns the execution time of all AudioProcessing calls.
const TickIntervalStats& proc_time() const { return proc_time_; }
protected:
// RAII class for execution time measurement. Updates the provided
// TickIntervalStats based on the time between ScopedTimer creation and
// leaving the enclosing scope.
class ScopedTimer {
public:
explicit ScopedTimer(TickIntervalStats* proc_time)
: proc_time_(proc_time), start_time_(TickTime::Now()) {}
~ScopedTimer() {
TickInterval interval = TickTime::Now() - start_time_;
proc_time_->sum += interval;
proc_time_->max = std::max(proc_time_->max, interval);
proc_time_->min = std::min(proc_time_->min, interval);
}
private:
TickIntervalStats* const proc_time_;
TickTime start_time_;
};
TickIntervalStats* mutable_proc_time() { return &proc_time_; }
private:
TickIntervalStats proc_time_;
};
// Used to read from and write to WavFile objects.
class WavFileProcessor final : public AudioFileProcessor {
public:
// Takes ownership of all parameters.
WavFileProcessor(rtc::scoped_ptr<AudioProcessing> ap,
rtc::scoped_ptr<WavReader> in_file,
rtc::scoped_ptr<WavWriter> out_file);
virtual ~WavFileProcessor() {}
// Processes one chunk from the WAV input and writes to the WAV output.
bool ProcessChunk() override;
private:
rtc::scoped_ptr<AudioProcessing> ap_;
ChannelBuffer<float> in_buf_;
ChannelBuffer<float> out_buf_;
const StreamConfig input_config_;
const StreamConfig output_config_;
ChannelBufferWavReader buffer_reader_;
ChannelBufferWavWriter buffer_writer_;
};
// Used to read from an aecdump file and write to a WavWriter.
class AecDumpFileProcessor final : public AudioFileProcessor {
public:
// Takes ownership of all parameters.
AecDumpFileProcessor(rtc::scoped_ptr<AudioProcessing> ap,
FILE* dump_file,
rtc::scoped_ptr<WavWriter> out_file);
virtual ~AecDumpFileProcessor();
// Processes messages from the aecdump file until the first Stream message is
// completed. Passes other data from the aecdump messages as appropriate.
bool ProcessChunk() override;
private:
void HandleMessage(const webrtc::audioproc::Init& msg);
void HandleMessage(const webrtc::audioproc::Stream& msg);
void HandleMessage(const webrtc::audioproc::ReverseStream& msg);
rtc::scoped_ptr<AudioProcessing> ap_;
FILE* dump_file_;
rtc::scoped_ptr<ChannelBuffer<float>> in_buf_;
rtc::scoped_ptr<ChannelBuffer<float>> reverse_buf_;
ChannelBuffer<float> out_buf_;
StreamConfig input_config_;
StreamConfig reverse_config_;
const StreamConfig output_config_;
ChannelBufferWavWriter buffer_writer_;
};
} // namespace webrtc
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_TEST_AUDIO_FILE_PROCESSOR_H_

View File

@ -9,6 +9,7 @@
*/
#include <stdio.h>
#include <iostream>
#include <sstream>
#include <string>
@ -18,26 +19,28 @@
#include "webrtc/common_audio/channel_buffer.h"
#include "webrtc/common_audio/wav_file.h"
#include "webrtc/modules/audio_processing/include/audio_processing.h"
#include "webrtc/modules/audio_processing/test/audio_file_processor.h"
#include "webrtc/modules/audio_processing/test/protobuf_utils.h"
#include "webrtc/modules/audio_processing/test/test_utils.h"
#include "webrtc/system_wrappers/include/tick_util.h"
#include "webrtc/test/testsupport/trace_to_stderr.h"
DEFINE_string(dump, "", "The name of the debug dump file to read from.");
DEFINE_string(i, "", "The name of the input file to read from.");
DEFINE_string(i_rev, "", "The name of the reverse input file to read from.");
DEFINE_string(o, "out.wav", "Name of the output file to write to.");
DEFINE_string(o_rev,
"out_rev.wav",
"Name of the reverse output file to write to.");
DEFINE_int32(out_channels, 0, "Number of output channels. Defaults to input.");
DEFINE_int32(out_sample_rate, 0,
"Output sample rate in Hz. Defaults to input.");
DEFINE_string(dump, "", "Name of the aecdump debug file to read from.");
DEFINE_string(i, "", "Name of the capture input stream file to read from.");
DEFINE_string(
o,
"out.wav",
"Name of the output file to write the processed capture stream to.");
DEFINE_int32(out_channels, 1, "Number of output channels.");
DEFINE_int32(out_sample_rate, 48000, "Output sample rate in Hz.");
DEFINE_string(mic_positions, "",
"Space delimited cartesian coordinates of microphones in meters. "
"The coordinates of each point are contiguous. "
"For a two element array: \"x1 y1 z1 x2 y2 z2\"");
DEFINE_double(target_angle_degrees, 90, "The azimuth of the target in radians");
DEFINE_double(
target_angle_degrees,
90,
"The azimuth of the target in degrees. Only applies to beamforming.");
DEFINE_bool(aec, false, "Enable echo cancellation.");
DEFINE_bool(agc, false, "Enable automatic gain control.");
@ -64,15 +67,6 @@ const char kUsage[] =
"All components are disabled by default. If any bi-directional components\n"
"are enabled, only debug dump files are permitted.";
// Returns a StreamConfig corresponding to wav_file if it's non-nullptr.
// Otherwise returns a default initialized StreamConfig.
StreamConfig MakeStreamConfig(const WavFile* wav_file) {
if (wav_file) {
return {wav_file->sample_rate(), wav_file->num_channels()};
}
return {};
}
} // namespace
int main(int argc, char* argv[]) {
@ -84,48 +78,34 @@ int main(int argc, char* argv[]) {
"An input file must be specified with either -i or -dump.\n");
return 1;
}
if (!FLAGS_dump.empty()) {
fprintf(stderr, "FIXME: the -dump option is not yet implemented.\n");
if (FLAGS_dump.empty() && (FLAGS_aec || FLAGS_ie)) {
fprintf(stderr, "-aec and -ie require a -dump file.\n");
return 1;
}
if (FLAGS_ie) {
fprintf(stderr,
"FIXME(ajm): The intelligibility enhancer output is not dumped.\n");
return 1;
}
test::TraceToStderr trace_to_stderr(true);
WavReader in_file(FLAGS_i);
// If the output format is uninitialized, use the input format.
const int out_channels =
FLAGS_out_channels ? FLAGS_out_channels : in_file.num_channels();
const int out_sample_rate =
FLAGS_out_sample_rate ? FLAGS_out_sample_rate : in_file.sample_rate();
WavWriter out_file(FLAGS_o, out_sample_rate, out_channels);
Config config;
config.Set<ExperimentalNs>(new ExperimentalNs(FLAGS_ts || FLAGS_all));
config.Set<Intelligibility>(new Intelligibility(FLAGS_ie || FLAGS_all));
if (FLAGS_bf || FLAGS_all) {
const size_t num_mics = in_file.num_channels();
const std::vector<Point> array_geometry =
ParseArrayGeometry(FLAGS_mic_positions, num_mics);
RTC_CHECK_EQ(array_geometry.size(), num_mics);
if (FLAGS_mic_positions.empty()) {
fprintf(stderr, "-mic_positions must be specified when -bf is used.\n");
return 1;
}
config.Set<Beamforming>(new Beamforming(
true, array_geometry,
true, ParseArrayGeometry(FLAGS_mic_positions),
SphericalPointf(DegreesToRadians(FLAGS_target_angle_degrees), 0.f,
1.f)));
}
config.Set<ExperimentalNs>(new ExperimentalNs(FLAGS_ts || FLAGS_all));
config.Set<Intelligibility>(new Intelligibility(FLAGS_ie || FLAGS_all));
rtc::scoped_ptr<AudioProcessing> ap(AudioProcessing::Create(config));
if (!FLAGS_dump.empty()) {
RTC_CHECK_EQ(kNoErr,
ap->echo_cancellation()->Enable(FLAGS_aec || FLAGS_all));
} else if (FLAGS_aec) {
fprintf(stderr, "-aec requires a -dump file.\n");
return -1;
}
bool process_reverse = !FLAGS_i_rev.empty();
RTC_CHECK_EQ(kNoErr, ap->echo_cancellation()->Enable(FLAGS_aec || FLAGS_all));
RTC_CHECK_EQ(kNoErr, ap->gain_control()->Enable(FLAGS_agc || FLAGS_all));
RTC_CHECK_EQ(kNoErr,
ap->gain_control()->set_mode(GainControl::kFixedDigital));
RTC_CHECK_EQ(kNoErr, ap->high_pass_filter()->Enable(FLAGS_hpf || FLAGS_all));
RTC_CHECK_EQ(kNoErr, ap->noise_suppression()->Enable(FLAGS_ns || FLAGS_all));
if (FLAGS_ns_level != -1) {
@ -135,109 +115,38 @@ int main(int argc, char* argv[]) {
}
ap->set_stream_key_pressed(FLAGS_ts);
printf("Input file: %s\nChannels: %d, Sample rate: %d Hz\n\n",
FLAGS_i.c_str(), in_file.num_channels(), in_file.sample_rate());
printf("Output file: %s\nChannels: %d, Sample rate: %d Hz\n\n",
FLAGS_o.c_str(), out_file.num_channels(), out_file.sample_rate());
rtc::scoped_ptr<AudioFileProcessor> processor;
auto out_file = rtc_make_scoped_ptr(
new WavWriter(FLAGS_o, FLAGS_out_sample_rate, FLAGS_out_channels));
std::cout << FLAGS_o << ": " << out_file->FormatAsString() << std::endl;
if (FLAGS_dump.empty()) {
auto in_file = rtc_make_scoped_ptr(new WavReader(FLAGS_i));
std::cout << FLAGS_i << ": " << in_file->FormatAsString() << std::endl;
processor.reset(
new WavFileProcessor(ap.Pass(), in_file.Pass(), out_file.Pass()));
ChannelBuffer<float> in_buf(
rtc::CheckedDivExact(in_file.sample_rate(), kChunksPerSecond),
in_file.num_channels());
ChannelBuffer<float> out_buf(
rtc::CheckedDivExact(out_file.sample_rate(), kChunksPerSecond),
out_file.num_channels());
std::vector<float> in_interleaved(in_buf.size());
std::vector<float> out_interleaved(out_buf.size());
rtc::scoped_ptr<WavReader> in_rev_file;
rtc::scoped_ptr<WavWriter> out_rev_file;
rtc::scoped_ptr<ChannelBuffer<float>> in_rev_buf;
rtc::scoped_ptr<ChannelBuffer<float>> out_rev_buf;
std::vector<float> in_rev_interleaved;
std::vector<float> out_rev_interleaved;
if (process_reverse) {
in_rev_file.reset(new WavReader(FLAGS_i_rev));
out_rev_file.reset(new WavWriter(FLAGS_o_rev, in_rev_file->sample_rate(),
in_rev_file->num_channels()));
printf("In rev file: %s\nChannels: %d, Sample rate: %d Hz\n\n",
FLAGS_i_rev.c_str(), in_rev_file->num_channels(),
in_rev_file->sample_rate());
printf("Out rev file: %s\nChannels: %d, Sample rate: %d Hz\n\n",
FLAGS_o_rev.c_str(), out_rev_file->num_channels(),
out_rev_file->sample_rate());
in_rev_buf.reset(new ChannelBuffer<float>(
rtc::CheckedDivExact(in_rev_file->sample_rate(), kChunksPerSecond),
in_rev_file->num_channels()));
in_rev_interleaved.resize(in_rev_buf->size());
out_rev_buf.reset(new ChannelBuffer<float>(
rtc::CheckedDivExact(out_rev_file->sample_rate(), kChunksPerSecond),
out_rev_file->num_channels()));
out_rev_interleaved.resize(out_rev_buf->size());
} else {
processor.reset(new AecDumpFileProcessor(
ap.Pass(), fopen(FLAGS_dump.c_str(), "rb"), out_file.Pass()));
}
TickTime processing_start_time;
TickInterval accumulated_time;
int num_chunks = 0;
const auto input_config = MakeStreamConfig(&in_file);
const auto output_config = MakeStreamConfig(&out_file);
const auto reverse_input_config = MakeStreamConfig(in_rev_file.get());
const auto reverse_output_config = MakeStreamConfig(out_rev_file.get());
while (in_file.ReadSamples(in_interleaved.size(),
&in_interleaved[0]) == in_interleaved.size()) {
// Have logs display the file time rather than wallclock time.
while (processor->ProcessChunk()) {
trace_to_stderr.SetTimeSeconds(num_chunks * 1.f / kChunksPerSecond);
FloatS16ToFloat(&in_interleaved[0], in_interleaved.size(),
&in_interleaved[0]);
Deinterleave(&in_interleaved[0], in_buf.num_frames(),
in_buf.num_channels(), in_buf.channels());
if (process_reverse) {
in_rev_file->ReadSamples(in_rev_interleaved.size(),
in_rev_interleaved.data());
FloatS16ToFloat(in_rev_interleaved.data(), in_rev_interleaved.size(),
in_rev_interleaved.data());
Deinterleave(in_rev_interleaved.data(), in_rev_buf->num_frames(),
in_rev_buf->num_channels(), in_rev_buf->channels());
}
if (FLAGS_perf) {
processing_start_time = TickTime::Now();
}
RTC_CHECK_EQ(kNoErr, ap->ProcessStream(in_buf.channels(), input_config,
output_config, out_buf.channels()));
if (process_reverse) {
RTC_CHECK_EQ(kNoErr, ap->ProcessReverseStream(
in_rev_buf->channels(), reverse_input_config,
reverse_output_config, out_rev_buf->channels()));
}
if (FLAGS_perf) {
accumulated_time += TickTime::Now() - processing_start_time;
}
Interleave(out_buf.channels(), out_buf.num_frames(),
out_buf.num_channels(), &out_interleaved[0]);
FloatToFloatS16(&out_interleaved[0], out_interleaved.size(),
&out_interleaved[0]);
out_file.WriteSamples(&out_interleaved[0], out_interleaved.size());
if (process_reverse) {
Interleave(out_rev_buf->channels(), out_rev_buf->num_frames(),
out_rev_buf->num_channels(), out_rev_interleaved.data());
FloatToFloatS16(out_rev_interleaved.data(), out_rev_interleaved.size(),
out_rev_interleaved.data());
out_rev_file->WriteSamples(out_rev_interleaved.data(),
out_rev_interleaved.size());
}
num_chunks++;
++num_chunks;
}
if (FLAGS_perf) {
int64_t execution_time_ms = accumulated_time.Milliseconds();
printf("\nExecution time: %.3f s\nFile time: %.2f s\n"
"Time per chunk: %.3f ms\n",
execution_time_ms * 0.001f, num_chunks * 1.f / kChunksPerSecond,
execution_time_ms * 1.f / num_chunks);
const auto& proc_time = processor->proc_time();
int64_t exec_time_us = proc_time.sum.Microseconds();
printf(
"\nExecution time: %.3f s, File time: %.2f s\n"
"Time per chunk (mean, max, min):\n%.0f us, %.0f us, %.0f us\n",
exec_time_us * 1e-6, num_chunks * 1.f / kChunksPerSecond,
exec_time_us * 1.f / num_chunks, 1.f * proc_time.max.Microseconds(),
1.f * proc_time.min.Microseconds());
}
return 0;
}

View File

@ -636,8 +636,8 @@ void void_main(int argc, char* argv[]) {
}
if (!raw_output) {
// The WAV file needs to be reset every time, because it cant change
// it's sample rate or number of channels.
// The WAV file needs to be reset every time, because it can't change
// its sample rate or number of channels.
output_wav_file.reset(new WavWriter(out_filename + ".wav",
output_sample_rate,
msg.num_output_channels()));

View File

@ -31,6 +31,35 @@ void RawFile::WriteSamples(const float* samples, size_t num_samples) {
fwrite(samples, sizeof(*samples), num_samples, file_handle_);
}
ChannelBufferWavReader::ChannelBufferWavReader(rtc::scoped_ptr<WavReader> file)
: file_(file.Pass()) {}
bool ChannelBufferWavReader::Read(ChannelBuffer<float>* buffer) {
RTC_CHECK_EQ(file_->num_channels(), buffer->num_channels());
interleaved_.resize(buffer->size());
if (file_->ReadSamples(interleaved_.size(), &interleaved_[0]) !=
interleaved_.size()) {
return false;
}
FloatS16ToFloat(&interleaved_[0], interleaved_.size(), &interleaved_[0]);
Deinterleave(&interleaved_[0], buffer->num_frames(), buffer->num_channels(),
buffer->channels());
return true;
}
ChannelBufferWavWriter::ChannelBufferWavWriter(rtc::scoped_ptr<WavWriter> file)
: file_(file.Pass()) {}
void ChannelBufferWavWriter::Write(const ChannelBuffer<float>& buffer) {
RTC_CHECK_EQ(file_->num_channels(), buffer.num_channels());
interleaved_.resize(buffer.size());
Interleave(buffer.channels(), buffer.num_frames(), buffer.num_channels(),
&interleaved_[0]);
FloatToFloatS16(&interleaved_[0], interleaved_.size(), &interleaved_[0]);
file_->WriteSamples(&interleaved_[0], interleaved_.size());
}
void WriteIntData(const int16_t* data,
size_t length,
WavWriter* wav_file,
@ -92,28 +121,32 @@ AudioProcessing::ChannelLayout LayoutFromChannels(int num_channels) {
case 2:
return AudioProcessing::kStereo;
default:
assert(false);
RTC_CHECK(false);
return AudioProcessing::kMono;
}
}
std::vector<Point> ParseArrayGeometry(const std::string& mic_positions,
size_t num_mics) {
std::vector<Point> ParseArrayGeometry(const std::string& mic_positions) {
const std::vector<float> values = ParseList<float>(mic_positions);
RTC_CHECK_EQ(values.size(), 3 * num_mics)
<< "Could not parse mic_positions or incorrect number of points.";
const size_t num_mics =
rtc::CheckedDivExact(values.size(), static_cast<size_t>(3));
RTC_CHECK_GT(num_mics, 0u) << "mic_positions is not large enough.";
std::vector<Point> result;
result.reserve(num_mics);
for (size_t i = 0; i < values.size(); i += 3) {
double x = values[i + 0];
double y = values[i + 1];
double z = values[i + 2];
result.push_back(Point(x, y, z));
result.push_back(Point(values[i + 0], values[i + 1], values[i + 2]));
}
return result;
}
std::vector<Point> ParseArrayGeometry(const std::string& mic_positions,
size_t num_mics) {
std::vector<Point> result = ParseArrayGeometry(mic_positions);
RTC_CHECK_EQ(result.size(), num_mics)
<< "Could not parse mic_positions or incorrect number of points.";
return result;
}
} // namespace webrtc

View File

@ -43,6 +43,35 @@ class RawFile final {
RTC_DISALLOW_COPY_AND_ASSIGN(RawFile);
};
// Reads ChannelBuffers from a provided WavReader.
class ChannelBufferWavReader final {
public:
explicit ChannelBufferWavReader(rtc::scoped_ptr<WavReader> file);
// Reads data from the file according to the |buffer| format. Returns false if
// a full buffer can't be read from the file.
bool Read(ChannelBuffer<float>* buffer);
private:
rtc::scoped_ptr<WavReader> file_;
std::vector<float> interleaved_;
RTC_DISALLOW_COPY_AND_ASSIGN(ChannelBufferWavReader);
};
// Writes ChannelBuffers to a provided WavWriter.
class ChannelBufferWavWriter final {
public:
explicit ChannelBufferWavWriter(rtc::scoped_ptr<WavWriter> file);
void Write(const ChannelBuffer<float>& buffer);
private:
rtc::scoped_ptr<WavWriter> file_;
std::vector<float> interleaved_;
RTC_DISALLOW_COPY_AND_ASSIGN(ChannelBufferWavWriter);
};
void WriteIntData(const int16_t* data,
size_t length,
WavWriter* wav_file,
@ -118,6 +147,9 @@ std::vector<T> ParseList(const std::string& to_parse) {
std::vector<Point> ParseArrayGeometry(const std::string& mic_positions,
size_t num_mics);
// Same as above, but without the num_mics check for when it isn't available.
std::vector<Point> ParseArrayGeometry(const std::string& mic_positions);
} // namespace webrtc
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_TEST_TEST_UTILS_H_

View File

@ -85,6 +85,7 @@ class TickTime {
class TickInterval {
public:
TickInterval();
explicit TickInterval(int64_t interval);
int64_t Milliseconds() const;
int64_t Microseconds() const;
@ -105,8 +106,6 @@ class TickInterval {
friend bool operator>=(const TickInterval& lhs, const TickInterval& rhs);
private:
explicit TickInterval(int64_t interval);
friend class TickTime;
friend TickInterval operator-(const TickTime& lhs, const TickTime& rhs);