Add support for multimedia timers to TaskQueue on Windows.
Multimedia timers are higher precision than WM_TIMER, but they're also a limited resource and more costly. So this implementation is a best effort implementation that falls back on WM_TIMER when multimedia timers aren't available. A possible future change could be to make high precision timers in a TaskQueue, optional. The reason for doing so would be for TaskQueues that don't need high precision timers, won't eat up timers from TQ instances that really need it. BUG=webrtc:7151 Review-Url: https://codereview.webrtc.org/2691973002 Cr-Commit-Position: refs/heads/master@{#16661}
This commit is contained in:
@ -178,6 +178,11 @@ class LOCKABLE TaskQueue {
|
||||
void PostTaskAndReply(std::unique_ptr<QueuedTask> task,
|
||||
std::unique_ptr<QueuedTask> reply);
|
||||
|
||||
// Schedules a task to execute a specified number of milliseconds from when
|
||||
// the call is made. The precision should be considered as "best effort"
|
||||
// and in some cases, such as on Windows when all high precision timers have
|
||||
// been used up, can be off by as much as 15 millseconds (although 8 would be
|
||||
// more likely). This can be mitigated by limiting the use of delayed tasks.
|
||||
void PostDelayedTask(std::unique_ptr<QueuedTask> task, uint32_t milliseconds);
|
||||
|
||||
template <class Closure>
|
||||
@ -185,6 +190,7 @@ class LOCKABLE TaskQueue {
|
||||
PostTask(std::unique_ptr<QueuedTask>(new ClosureTask<Closure>(closure)));
|
||||
}
|
||||
|
||||
// See documentation above for performance expectations.
|
||||
template <class Closure>
|
||||
void PostDelayedTask(const Closure& closure, uint32_t milliseconds) {
|
||||
PostDelayedTask(
|
||||
@ -254,10 +260,12 @@ class LOCKABLE TaskQueue {
|
||||
dispatch_queue_t queue_;
|
||||
QueueContext* const context_;
|
||||
#elif defined(WEBRTC_WIN)
|
||||
class MultimediaTimer;
|
||||
typedef std::unordered_map<UINT_PTR, std::unique_ptr<QueuedTask>>
|
||||
DelayedTasks;
|
||||
static bool ThreadMain(void* context);
|
||||
static bool ProcessQueuedMessages(DelayedTasks* delayed_tasks);
|
||||
static bool ProcessQueuedMessages(DelayedTasks* delayed_tasks,
|
||||
std::vector<MultimediaTimer>* timers);
|
||||
|
||||
class WorkerThread : public PlatformThread {
|
||||
public:
|
||||
|
||||
@ -112,14 +112,14 @@ TEST(TaskQueueTest, PostMultipleDelayed) {
|
||||
TaskQueue queue(kQueueName);
|
||||
|
||||
std::vector<std::unique_ptr<Event>> events;
|
||||
for (int i = 0; i < 10; ++i) {
|
||||
for (int i = 0; i < 100; ++i) {
|
||||
events.push_back(std::unique_ptr<Event>(new Event(false, false)));
|
||||
queue.PostDelayedTask(
|
||||
Bind(&CheckCurrent, kQueueName, events.back().get(), &queue), 10);
|
||||
}
|
||||
|
||||
for (const auto& e : events)
|
||||
EXPECT_TRUE(e->Wait(100));
|
||||
EXPECT_TRUE(e->Wait(1000));
|
||||
}
|
||||
|
||||
TEST(TaskQueueTest, PostDelayedAfterDestruct) {
|
||||
|
||||
@ -10,8 +10,12 @@
|
||||
|
||||
#include "webrtc/base/task_queue.h"
|
||||
|
||||
#include <mmsystem.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include "webrtc/base/arraysize.h"
|
||||
#include "webrtc/base/checks.h"
|
||||
#include "webrtc/base/logging.h"
|
||||
|
||||
@ -29,7 +33,7 @@ BOOL CALLBACK InitializeTls(PINIT_ONCE init_once, void* param, void** context) {
|
||||
|
||||
DWORD GetQueuePtrTls() {
|
||||
static INIT_ONCE init_once = INIT_ONCE_STATIC_INIT;
|
||||
InitOnceExecuteOnce(&init_once, InitializeTls, nullptr, nullptr);
|
||||
::InitOnceExecuteOnce(&init_once, InitializeTls, nullptr, nullptr);
|
||||
return g_queue_ptr_tls;
|
||||
}
|
||||
|
||||
@ -40,13 +44,107 @@ struct ThreadStartupData {
|
||||
|
||||
void CALLBACK InitializeQueueThread(ULONG_PTR param) {
|
||||
MSG msg;
|
||||
PeekMessage(&msg, NULL, WM_USER, WM_USER, PM_NOREMOVE);
|
||||
::PeekMessage(&msg, nullptr, WM_USER, WM_USER, PM_NOREMOVE);
|
||||
ThreadStartupData* data = reinterpret_cast<ThreadStartupData*>(param);
|
||||
TlsSetValue(GetQueuePtrTls(), data->thread_context);
|
||||
::TlsSetValue(GetQueuePtrTls(), data->thread_context);
|
||||
data->started->Set();
|
||||
}
|
||||
} // namespace
|
||||
|
||||
class TaskQueue::MultimediaTimer {
|
||||
public:
|
||||
// kMaxTimers defines the limit of how many MultimediaTimer instances should
|
||||
// be created.
|
||||
// Background: The maximum number of supported handles for Wait functions, is
|
||||
// MAXIMUM_WAIT_OBJECTS - 1 (63).
|
||||
// There are some ways to work around the limitation but as it turns out, the
|
||||
// limit of concurrently active multimedia timers per process, is much lower,
|
||||
// or 16. So there isn't much value in going to the lenghts required to
|
||||
// overcome the Wait limitations.
|
||||
// kMaxTimers is larger than 16 though since it is possible that 'complete' or
|
||||
// signaled timers that haven't been handled, are counted as part of
|
||||
// kMaxTimers and thus a multimedia timer can actually be queued even though
|
||||
// as far as we're concerned, there are more than 16 that are pending.
|
||||
static const int kMaxTimers = MAXIMUM_WAIT_OBJECTS - 1;
|
||||
|
||||
// Controls how many MultimediaTimer instances a queue can hold before
|
||||
// attempting to garbage collect (GC) timers that aren't in use.
|
||||
static const int kInstanceThresholdGC = 8;
|
||||
|
||||
MultimediaTimer() : event_(::CreateEvent(nullptr, false, false, nullptr)) {}
|
||||
|
||||
MultimediaTimer(MultimediaTimer&& timer)
|
||||
: event_(timer.event_),
|
||||
timer_id_(timer.timer_id_),
|
||||
task_(std::move(timer.task_)) {
|
||||
RTC_DCHECK(event_);
|
||||
timer.event_ = nullptr;
|
||||
timer.timer_id_ = 0;
|
||||
}
|
||||
|
||||
~MultimediaTimer() { Close(); }
|
||||
|
||||
// Implementing this operator is required because of the way
|
||||
// some stl algorithms work, such as std::rotate().
|
||||
MultimediaTimer& operator=(MultimediaTimer&& timer) {
|
||||
if (this != &timer) {
|
||||
Close();
|
||||
event_ = timer.event_;
|
||||
timer.event_ = nullptr;
|
||||
task_ = std::move(timer.task_);
|
||||
timer_id_ = timer.timer_id_;
|
||||
timer.timer_id_ = 0;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool StartOneShotTimer(std::unique_ptr<QueuedTask> task, UINT delay_ms) {
|
||||
RTC_DCHECK_EQ(0, timer_id_);
|
||||
RTC_DCHECK(event_ != nullptr);
|
||||
RTC_DCHECK(!task_.get());
|
||||
RTC_DCHECK(task.get());
|
||||
task_ = std::move(task);
|
||||
timer_id_ =
|
||||
::timeSetEvent(delay_ms, 0, reinterpret_cast<LPTIMECALLBACK>(event_), 0,
|
||||
TIME_ONESHOT | TIME_CALLBACK_EVENT_SET);
|
||||
return timer_id_ != 0;
|
||||
}
|
||||
|
||||
std::unique_ptr<QueuedTask> Cancel() {
|
||||
if (timer_id_) {
|
||||
::timeKillEvent(timer_id_);
|
||||
timer_id_ = 0;
|
||||
}
|
||||
return std::move(task_);
|
||||
}
|
||||
|
||||
void OnEventSignaled() {
|
||||
RTC_DCHECK_NE(0, timer_id_);
|
||||
timer_id_ = 0;
|
||||
task_->Run() ? task_.reset() : static_cast<void>(task_.release());
|
||||
}
|
||||
|
||||
HANDLE event() const { return event_; }
|
||||
|
||||
bool is_active() const { return timer_id_ != 0; }
|
||||
|
||||
private:
|
||||
void Close() {
|
||||
Cancel();
|
||||
|
||||
if (event_) {
|
||||
::CloseHandle(event_);
|
||||
event_ = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
HANDLE event_ = nullptr;
|
||||
MMRESULT timer_id_ = 0;
|
||||
std::unique_ptr<QueuedTask> task_;
|
||||
|
||||
RTC_DISALLOW_COPY_AND_ASSIGN(MultimediaTimer);
|
||||
};
|
||||
|
||||
TaskQueue::TaskQueue(const char* queue_name)
|
||||
: thread_(&TaskQueue::ThreadMain, this, queue_name) {
|
||||
RTC_DCHECK(queue_name);
|
||||
@ -60,7 +158,7 @@ TaskQueue::TaskQueue(const char* queue_name)
|
||||
|
||||
TaskQueue::~TaskQueue() {
|
||||
RTC_DCHECK(!IsCurrent());
|
||||
while (!PostThreadMessage(thread_.GetThreadRef(), WM_QUIT, 0, 0)) {
|
||||
while (!::PostThreadMessage(thread_.GetThreadRef(), WM_QUIT, 0, 0)) {
|
||||
RTC_CHECK_EQ(ERROR_NOT_ENOUGH_QUOTA, ::GetLastError());
|
||||
Sleep(1);
|
||||
}
|
||||
@ -69,7 +167,7 @@ TaskQueue::~TaskQueue() {
|
||||
|
||||
// static
|
||||
TaskQueue* TaskQueue::Current() {
|
||||
return static_cast<TaskQueue*>(TlsGetValue(GetQueuePtrTls()));
|
||||
return static_cast<TaskQueue*>(::TlsGetValue(GetQueuePtrTls()));
|
||||
}
|
||||
|
||||
// static
|
||||
@ -83,8 +181,8 @@ bool TaskQueue::IsCurrent() const {
|
||||
}
|
||||
|
||||
void TaskQueue::PostTask(std::unique_ptr<QueuedTask> task) {
|
||||
if (PostThreadMessage(thread_.GetThreadRef(), WM_RUN_TASK, 0,
|
||||
reinterpret_cast<LPARAM>(task.get()))) {
|
||||
if (::PostThreadMessage(thread_.GetThreadRef(), WM_RUN_TASK, 0,
|
||||
reinterpret_cast<LPARAM>(task.get()))) {
|
||||
task.release();
|
||||
}
|
||||
}
|
||||
@ -100,8 +198,8 @@ void TaskQueue::PostDelayedTask(std::unique_ptr<QueuedTask> task,
|
||||
#else
|
||||
wparam = milliseconds;
|
||||
#endif
|
||||
if (PostThreadMessage(thread_.GetThreadRef(), WM_QUEUE_DELAYED_TASK, wparam,
|
||||
reinterpret_cast<LPARAM>(task.get()))) {
|
||||
if (::PostThreadMessage(thread_.GetThreadRef(), WM_QUEUE_DELAYED_TASK, wparam,
|
||||
reinterpret_cast<LPARAM>(task.get()))) {
|
||||
task.release();
|
||||
}
|
||||
}
|
||||
@ -117,8 +215,8 @@ void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
|
||||
delete task_ptr;
|
||||
// If the thread's message queue is full, we can't queue the task and will
|
||||
// have to drop it (i.e. delete).
|
||||
if (!PostThreadMessage(reply_thread_id, WM_RUN_TASK, 0,
|
||||
reinterpret_cast<LPARAM>(reply_task_ptr))) {
|
||||
if (!::PostThreadMessage(reply_thread_id, WM_RUN_TASK, 0,
|
||||
reinterpret_cast<LPARAM>(reply_task_ptr))) {
|
||||
delete reply_task_ptr;
|
||||
}
|
||||
});
|
||||
@ -131,25 +229,69 @@ void TaskQueue::PostTaskAndReply(std::unique_ptr<QueuedTask> task,
|
||||
|
||||
// static
|
||||
bool TaskQueue::ThreadMain(void* context) {
|
||||
HANDLE timer_handles[MultimediaTimer::kMaxTimers];
|
||||
// Active multimedia timers.
|
||||
std::vector<MultimediaTimer> mm_timers;
|
||||
// Tasks that have been queued by using SetTimer/WM_TIMER.
|
||||
DelayedTasks delayed_tasks;
|
||||
|
||||
while (true) {
|
||||
DWORD result = ::MsgWaitForMultipleObjectsEx(0, nullptr, INFINITE,
|
||||
RTC_DCHECK(mm_timers.size() <= arraysize(timer_handles));
|
||||
DWORD count = 0;
|
||||
for (const auto& t : mm_timers) {
|
||||
if (!t.is_active())
|
||||
break;
|
||||
timer_handles[count++] = t.event();
|
||||
}
|
||||
// Make sure we do an alertable wait as that's required to allow APCs to run
|
||||
// (e.g. required for InitializeQueueThread and stopping the thread in
|
||||
// PlatformThread).
|
||||
DWORD result = ::MsgWaitForMultipleObjectsEx(count, timer_handles, INFINITE,
|
||||
QS_ALLEVENTS, MWMO_ALERTABLE);
|
||||
RTC_CHECK_NE(WAIT_FAILED, result);
|
||||
if (result == WAIT_OBJECT_0) {
|
||||
if (!ProcessQueuedMessages(&delayed_tasks))
|
||||
// If we're not waiting for any timers, then count will be equal to
|
||||
// WAIT_OBJECT_0. If we're waiting for timers, then |count| represents
|
||||
// "One more than the number of timers", which means that there's a
|
||||
// message in the queue that needs to be handled.
|
||||
// If |result| is less than |count|, then its value will be the index of the
|
||||
// timer that has been signaled.
|
||||
if (result == (WAIT_OBJECT_0 + count)) {
|
||||
if (!ProcessQueuedMessages(&delayed_tasks, &mm_timers))
|
||||
break;
|
||||
} else if (result < (WAIT_OBJECT_0 + count)) {
|
||||
mm_timers[result].OnEventSignaled();
|
||||
RTC_DCHECK(!mm_timers[result].is_active());
|
||||
// Reuse timer events by moving inactive timers to the back of the vector.
|
||||
// When new delayed tasks are queued, they'll get reused.
|
||||
if (mm_timers.size() > 1) {
|
||||
auto it = mm_timers.begin() + result;
|
||||
std::rotate(it, it + 1, mm_timers.end());
|
||||
}
|
||||
|
||||
// Collect some garbage.
|
||||
if (mm_timers.size() > MultimediaTimer::kInstanceThresholdGC) {
|
||||
const auto inactive = std::find_if(
|
||||
mm_timers.begin(), mm_timers.end(),
|
||||
[](const MultimediaTimer& t) { return !t.is_active(); });
|
||||
if (inactive != mm_timers.end()) {
|
||||
// Since inactive timers are always moved to the back, we can
|
||||
// safely delete all timers following the first inactive one.
|
||||
mm_timers.erase(inactive, mm_timers.end());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
RTC_DCHECK_EQ(WAIT_IO_COMPLETION, result);
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// static
|
||||
bool TaskQueue::ProcessQueuedMessages(DelayedTasks* delayed_tasks) {
|
||||
bool TaskQueue::ProcessQueuedMessages(DelayedTasks* delayed_tasks,
|
||||
std::vector<MultimediaTimer>* timers) {
|
||||
MSG msg = {};
|
||||
while (PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) &&
|
||||
while (::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) &&
|
||||
msg.message != WM_QUIT) {
|
||||
if (!msg.hwnd) {
|
||||
switch (msg.message) {
|
||||
@ -160,7 +302,8 @@ bool TaskQueue::ProcessQueuedMessages(DelayedTasks* delayed_tasks) {
|
||||
break;
|
||||
}
|
||||
case WM_QUEUE_DELAYED_TASK: {
|
||||
QueuedTask* task = reinterpret_cast<QueuedTask*>(msg.lParam);
|
||||
std::unique_ptr<QueuedTask> task(
|
||||
reinterpret_cast<QueuedTask*>(msg.lParam));
|
||||
uint32_t milliseconds = msg.wParam & 0xFFFFFFFF;
|
||||
#if defined(_WIN64)
|
||||
// Subtract the time it took to queue the timer.
|
||||
@ -169,12 +312,38 @@ bool TaskQueue::ProcessQueuedMessages(DelayedTasks* delayed_tasks) {
|
||||
milliseconds =
|
||||
post_time > milliseconds ? 0 : milliseconds - post_time;
|
||||
#endif
|
||||
UINT_PTR timer_id = SetTimer(nullptr, 0, milliseconds, nullptr);
|
||||
delayed_tasks->insert(std::make_pair(timer_id, task));
|
||||
bool timer_queued = false;
|
||||
if (timers->size() < MultimediaTimer::kMaxTimers) {
|
||||
MultimediaTimer* timer = nullptr;
|
||||
auto available = std::find_if(
|
||||
timers->begin(), timers->end(),
|
||||
[](const MultimediaTimer& t) { return !t.is_active(); });
|
||||
if (available != timers->end()) {
|
||||
timer = &(*available);
|
||||
} else {
|
||||
timers->emplace_back();
|
||||
timer = &timers->back();
|
||||
}
|
||||
|
||||
timer_queued =
|
||||
timer->StartOneShotTimer(std::move(task), milliseconds);
|
||||
if (!timer_queued) {
|
||||
// No more multimedia timers can be queued.
|
||||
// Detach the task and fall back on SetTimer.
|
||||
task = timer->Cancel();
|
||||
}
|
||||
}
|
||||
|
||||
// When we fail to use multimedia timers, we fall back on the more
|
||||
// coarse SetTimer/WM_TIMER approach.
|
||||
if (!timer_queued) {
|
||||
UINT_PTR timer_id = ::SetTimer(nullptr, 0, milliseconds, nullptr);
|
||||
delayed_tasks->insert(std::make_pair(timer_id, task.release()));
|
||||
}
|
||||
break;
|
||||
}
|
||||
case WM_TIMER: {
|
||||
KillTimer(nullptr, msg.wParam);
|
||||
::KillTimer(nullptr, msg.wParam);
|
||||
auto found = delayed_tasks->find(msg.wParam);
|
||||
RTC_DCHECK(found != delayed_tasks->end());
|
||||
if (!found->second->Run())
|
||||
@ -187,8 +356,8 @@ bool TaskQueue::ProcessQueuedMessages(DelayedTasks* delayed_tasks) {
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
TranslateMessage(&msg);
|
||||
DispatchMessage(&msg);
|
||||
::TranslateMessage(&msg);
|
||||
::DispatchMessage(&msg);
|
||||
}
|
||||
}
|
||||
return msg.message != WM_QUIT;
|
||||
|
||||
Reference in New Issue
Block a user