
Trying to submit all changes at once proved impossible since there were too many changes in too many files. The changes to PRESUBMIT.py will be uploaded in the last CL. (original CL: https://codereview.webrtc.org/1528503003/) BUG=webrtc:5309 TBR=mflodman@webrtc.org Review URL: https://codereview.webrtc.org/1540243002 Cr-Commit-Position: refs/heads/master@{#11105}
285 lines
9.5 KiB
C++
285 lines
9.5 KiB
C++
/*
|
|
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/video_coding/timing.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#include "webrtc/modules/video_coding/internal_defines.h"
|
|
#include "webrtc/modules/video_coding/jitter_buffer_common.h"
|
|
#include "webrtc/system_wrappers/include/clock.h"
|
|
#include "webrtc/system_wrappers/include/metrics.h"
|
|
#include "webrtc/system_wrappers/include/timestamp_extrapolator.h"
|
|
|
|
namespace webrtc {
|
|
|
|
VCMTiming::VCMTiming(Clock* clock, VCMTiming* master_timing)
|
|
: crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
|
|
clock_(clock),
|
|
master_(false),
|
|
ts_extrapolator_(),
|
|
codec_timer_(),
|
|
render_delay_ms_(kDefaultRenderDelayMs),
|
|
min_playout_delay_ms_(0),
|
|
jitter_delay_ms_(0),
|
|
current_delay_ms_(0),
|
|
last_decode_ms_(0),
|
|
prev_frame_timestamp_(0),
|
|
num_decoded_frames_(0),
|
|
num_delayed_decoded_frames_(0),
|
|
first_decoded_frame_ms_(-1),
|
|
sum_missed_render_deadline_ms_(0) {
|
|
if (master_timing == NULL) {
|
|
master_ = true;
|
|
ts_extrapolator_ = new TimestampExtrapolator(clock_->TimeInMilliseconds());
|
|
} else {
|
|
ts_extrapolator_ = master_timing->ts_extrapolator_;
|
|
}
|
|
}
|
|
|
|
VCMTiming::~VCMTiming() {
|
|
UpdateHistograms();
|
|
if (master_) {
|
|
delete ts_extrapolator_;
|
|
}
|
|
delete crit_sect_;
|
|
}
|
|
|
|
void VCMTiming::UpdateHistograms() const {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
if (num_decoded_frames_ == 0) {
|
|
return;
|
|
}
|
|
int64_t elapsed_sec =
|
|
(clock_->TimeInMilliseconds() - first_decoded_frame_ms_) / 1000;
|
|
if (elapsed_sec < metrics::kMinRunTimeInSeconds) {
|
|
return;
|
|
}
|
|
RTC_HISTOGRAM_COUNTS_SPARSE_100(
|
|
"WebRTC.Video.DecodedFramesPerSecond",
|
|
static_cast<int>((num_decoded_frames_ / elapsed_sec) + 0.5f));
|
|
RTC_HISTOGRAM_PERCENTAGE_SPARSE(
|
|
"WebRTC.Video.DelayedFramesToRenderer",
|
|
num_delayed_decoded_frames_ * 100 / num_decoded_frames_);
|
|
if (num_delayed_decoded_frames_ > 0) {
|
|
RTC_HISTOGRAM_COUNTS_SPARSE_1000(
|
|
"WebRTC.Video.DelayedFramesToRenderer_AvgDelayInMs",
|
|
sum_missed_render_deadline_ms_ / num_delayed_decoded_frames_);
|
|
}
|
|
}
|
|
|
|
void VCMTiming::Reset() {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
ts_extrapolator_->Reset(clock_->TimeInMilliseconds());
|
|
codec_timer_.Reset();
|
|
render_delay_ms_ = kDefaultRenderDelayMs;
|
|
min_playout_delay_ms_ = 0;
|
|
jitter_delay_ms_ = 0;
|
|
current_delay_ms_ = 0;
|
|
prev_frame_timestamp_ = 0;
|
|
}
|
|
|
|
void VCMTiming::ResetDecodeTime() {
|
|
CriticalSectionScoped lock(crit_sect_);
|
|
codec_timer_.Reset();
|
|
}
|
|
|
|
void VCMTiming::set_render_delay(uint32_t render_delay_ms) {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
render_delay_ms_ = render_delay_ms;
|
|
}
|
|
|
|
void VCMTiming::set_min_playout_delay(uint32_t min_playout_delay_ms) {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
min_playout_delay_ms_ = min_playout_delay_ms;
|
|
}
|
|
|
|
void VCMTiming::SetJitterDelay(uint32_t jitter_delay_ms) {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
if (jitter_delay_ms != jitter_delay_ms_) {
|
|
jitter_delay_ms_ = jitter_delay_ms;
|
|
// When in initial state, set current delay to minimum delay.
|
|
if (current_delay_ms_ == 0) {
|
|
current_delay_ms_ = jitter_delay_ms_;
|
|
}
|
|
}
|
|
}
|
|
|
|
void VCMTiming::UpdateCurrentDelay(uint32_t frame_timestamp) {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
uint32_t target_delay_ms = TargetDelayInternal();
|
|
|
|
if (current_delay_ms_ == 0) {
|
|
// Not initialized, set current delay to target.
|
|
current_delay_ms_ = target_delay_ms;
|
|
} else if (target_delay_ms != current_delay_ms_) {
|
|
int64_t delay_diff_ms =
|
|
static_cast<int64_t>(target_delay_ms) - current_delay_ms_;
|
|
// Never change the delay with more than 100 ms every second. If we're
|
|
// changing the delay in too large steps we will get noticeable freezes. By
|
|
// limiting the change we can increase the delay in smaller steps, which
|
|
// will be experienced as the video is played in slow motion. When lowering
|
|
// the delay the video will be played at a faster pace.
|
|
int64_t max_change_ms = 0;
|
|
if (frame_timestamp < 0x0000ffff && prev_frame_timestamp_ > 0xffff0000) {
|
|
// wrap
|
|
max_change_ms = kDelayMaxChangeMsPerS *
|
|
(frame_timestamp + (static_cast<int64_t>(1) << 32) -
|
|
prev_frame_timestamp_) /
|
|
90000;
|
|
} else {
|
|
max_change_ms = kDelayMaxChangeMsPerS *
|
|
(frame_timestamp - prev_frame_timestamp_) / 90000;
|
|
}
|
|
if (max_change_ms <= 0) {
|
|
// Any changes less than 1 ms are truncated and
|
|
// will be postponed. Negative change will be due
|
|
// to reordering and should be ignored.
|
|
return;
|
|
}
|
|
delay_diff_ms = std::max(delay_diff_ms, -max_change_ms);
|
|
delay_diff_ms = std::min(delay_diff_ms, max_change_ms);
|
|
|
|
current_delay_ms_ = current_delay_ms_ + static_cast<int32_t>(delay_diff_ms);
|
|
}
|
|
prev_frame_timestamp_ = frame_timestamp;
|
|
}
|
|
|
|
void VCMTiming::UpdateCurrentDelay(int64_t render_time_ms,
|
|
int64_t actual_decode_time_ms) {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
uint32_t target_delay_ms = TargetDelayInternal();
|
|
int64_t delayed_ms = actual_decode_time_ms -
|
|
(render_time_ms - MaxDecodeTimeMs() - render_delay_ms_);
|
|
if (delayed_ms < 0) {
|
|
return;
|
|
}
|
|
if (current_delay_ms_ + delayed_ms <= target_delay_ms) {
|
|
current_delay_ms_ += static_cast<uint32_t>(delayed_ms);
|
|
} else {
|
|
current_delay_ms_ = target_delay_ms;
|
|
}
|
|
}
|
|
|
|
int32_t VCMTiming::StopDecodeTimer(uint32_t time_stamp,
|
|
int32_t decode_time_ms,
|
|
int64_t now_ms,
|
|
int64_t render_time_ms) {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
codec_timer_.MaxFilter(decode_time_ms, now_ms);
|
|
assert(decode_time_ms >= 0);
|
|
last_decode_ms_ = decode_time_ms;
|
|
|
|
// Update stats.
|
|
++num_decoded_frames_;
|
|
if (num_decoded_frames_ == 1) {
|
|
first_decoded_frame_ms_ = now_ms;
|
|
}
|
|
int time_until_rendering_ms = render_time_ms - render_delay_ms_ - now_ms;
|
|
if (time_until_rendering_ms < 0) {
|
|
sum_missed_render_deadline_ms_ += -time_until_rendering_ms;
|
|
++num_delayed_decoded_frames_;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void VCMTiming::IncomingTimestamp(uint32_t time_stamp, int64_t now_ms) {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
ts_extrapolator_->Update(now_ms, time_stamp);
|
|
}
|
|
|
|
int64_t VCMTiming::RenderTimeMs(uint32_t frame_timestamp,
|
|
int64_t now_ms) const {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
const int64_t render_time_ms = RenderTimeMsInternal(frame_timestamp, now_ms);
|
|
return render_time_ms;
|
|
}
|
|
|
|
int64_t VCMTiming::RenderTimeMsInternal(uint32_t frame_timestamp,
|
|
int64_t now_ms) const {
|
|
int64_t estimated_complete_time_ms =
|
|
ts_extrapolator_->ExtrapolateLocalTime(frame_timestamp);
|
|
if (estimated_complete_time_ms == -1) {
|
|
estimated_complete_time_ms = now_ms;
|
|
}
|
|
|
|
// Make sure that we have at least the playout delay.
|
|
uint32_t actual_delay = std::max(current_delay_ms_, min_playout_delay_ms_);
|
|
return estimated_complete_time_ms + actual_delay;
|
|
}
|
|
|
|
// Must be called from inside a critical section.
|
|
int32_t VCMTiming::MaxDecodeTimeMs(
|
|
FrameType frame_type /*= kVideoFrameDelta*/) const {
|
|
const int32_t decode_time_ms = codec_timer_.RequiredDecodeTimeMs(frame_type);
|
|
assert(decode_time_ms >= 0);
|
|
return decode_time_ms;
|
|
}
|
|
|
|
uint32_t VCMTiming::MaxWaitingTime(int64_t render_time_ms,
|
|
int64_t now_ms) const {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
|
|
const int64_t max_wait_time_ms =
|
|
render_time_ms - now_ms - MaxDecodeTimeMs() - render_delay_ms_;
|
|
|
|
if (max_wait_time_ms < 0) {
|
|
return 0;
|
|
}
|
|
return static_cast<uint32_t>(max_wait_time_ms);
|
|
}
|
|
|
|
bool VCMTiming::EnoughTimeToDecode(
|
|
uint32_t available_processing_time_ms) const {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
int32_t max_decode_time_ms = MaxDecodeTimeMs();
|
|
if (max_decode_time_ms < 0) {
|
|
// Haven't decoded any frames yet, try decoding one to get an estimate
|
|
// of the decode time.
|
|
return true;
|
|
} else if (max_decode_time_ms == 0) {
|
|
// Decode time is less than 1, set to 1 for now since
|
|
// we don't have any better precision. Count ticks later?
|
|
max_decode_time_ms = 1;
|
|
}
|
|
return static_cast<int32_t>(available_processing_time_ms) -
|
|
max_decode_time_ms >
|
|
0;
|
|
}
|
|
|
|
uint32_t VCMTiming::TargetVideoDelay() const {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
return TargetDelayInternal();
|
|
}
|
|
|
|
uint32_t VCMTiming::TargetDelayInternal() const {
|
|
return std::max(min_playout_delay_ms_,
|
|
jitter_delay_ms_ + MaxDecodeTimeMs() + render_delay_ms_);
|
|
}
|
|
|
|
void VCMTiming::GetTimings(int* decode_ms,
|
|
int* max_decode_ms,
|
|
int* current_delay_ms,
|
|
int* target_delay_ms,
|
|
int* jitter_buffer_ms,
|
|
int* min_playout_delay_ms,
|
|
int* render_delay_ms) const {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
*decode_ms = last_decode_ms_;
|
|
*max_decode_ms = MaxDecodeTimeMs();
|
|
*current_delay_ms = current_delay_ms_;
|
|
*target_delay_ms = TargetDelayInternal();
|
|
*jitter_buffer_ms = jitter_delay_ms_;
|
|
*min_playout_delay_ms = min_playout_delay_ms_;
|
|
*render_delay_ms = render_delay_ms_;
|
|
}
|
|
|
|
} // namespace webrtc
|