Currently there is a hard limit for the estimated captured frame interval of 45ms. As the encoder utilization is calculated as (input frame interval)/(encode time), overuse signals can be triggered even though there is plenty of time to go around if the fps is low. However, in order to avoid falsly estimating low encode usage in case the capturer has a dynamic frame rate, set the frame interval based on the actual current max framerate. BUG=webrtc:4172 Review-Url: https://codereview.webrtc.org/2918143003 Cr-Commit-Position: refs/heads/master@{#18610}
563 lines
21 KiB
C++
563 lines
21 KiB
C++
/*
|
|
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/video/overuse_frame_detector.h"
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
#include <algorithm>
|
|
#include <list>
|
|
#include <map>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
#include "webrtc/api/video/video_frame.h"
|
|
#include "webrtc/base/checks.h"
|
|
#include "webrtc/base/logging.h"
|
|
#include "webrtc/base/numerics/exp_filter.h"
|
|
#include "webrtc/base/timeutils.h"
|
|
#include "webrtc/common_video/include/frame_callback.h"
|
|
#include "webrtc/system_wrappers/include/field_trial.h"
|
|
|
|
#if defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
|
|
#include <mach/mach.h>
|
|
#endif // defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
|
|
|
|
namespace webrtc {
|
|
|
|
namespace {
|
|
const int64_t kCheckForOveruseIntervalMs = 5000;
|
|
const int64_t kTimeToFirstCheckForOveruseMs = 100;
|
|
|
|
// Delay between consecutive rampups. (Used for quick recovery.)
|
|
const int kQuickRampUpDelayMs = 10 * 1000;
|
|
// Delay between rampup attempts. Initially uses standard, scales up to max.
|
|
const int kStandardRampUpDelayMs = 40 * 1000;
|
|
const int kMaxRampUpDelayMs = 240 * 1000;
|
|
// Expontential back-off factor, to prevent annoying up-down behaviour.
|
|
const double kRampUpBackoffFactor = 2.0;
|
|
|
|
// Max number of overuses detected before always applying the rampup delay.
|
|
const int kMaxOverusesBeforeApplyRampupDelay = 4;
|
|
|
|
// The maximum exponent to use in VCMExpFilter.
|
|
const float kMaxExp = 7.0f;
|
|
// Default value used before first reconfiguration.
|
|
const int kDefaultFrameRate = 30;
|
|
// Default sample diff, default frame rate.
|
|
const float kDefaultSampleDiffMs = 1000.0f / kDefaultFrameRate;
|
|
// A factor applied to the sample diff on OnTargetFramerateUpdated to determine
|
|
// a max limit for the sample diff. For instance, with a framerate of 30fps,
|
|
// the sample diff is capped to (1000 / 30) * 1.35 = 45ms. This prevents
|
|
// triggering too soon if there are individual very large outliers.
|
|
const float kMaxSampleDiffMarginFactor = 1.35f;
|
|
// Minimum framerate allowed for usage calculation. This prevents crazy long
|
|
// encode times from being accepted if the frame rate happens to be low.
|
|
const int kMinFramerate = 7;
|
|
const int kMaxFramerate = 30;
|
|
|
|
const auto kScaleReasonCpu = AdaptationObserverInterface::AdaptReason::kCpu;
|
|
} // namespace
|
|
|
|
CpuOveruseOptions::CpuOveruseOptions()
|
|
: high_encode_usage_threshold_percent(85),
|
|
frame_timeout_interval_ms(1500),
|
|
min_frame_samples(120),
|
|
min_process_count(3),
|
|
high_threshold_consecutive_count(2) {
|
|
#if defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
|
|
// This is proof-of-concept code for letting the physical core count affect
|
|
// the interval into which we attempt to scale. For now, the code is Mac OS
|
|
// specific, since that's the platform were we saw most problems.
|
|
// TODO(torbjorng): Enhance SystemInfo to return this metric.
|
|
|
|
mach_port_t mach_host = mach_host_self();
|
|
host_basic_info hbi = {};
|
|
mach_msg_type_number_t info_count = HOST_BASIC_INFO_COUNT;
|
|
kern_return_t kr =
|
|
host_info(mach_host, HOST_BASIC_INFO, reinterpret_cast<host_info_t>(&hbi),
|
|
&info_count);
|
|
mach_port_deallocate(mach_task_self(), mach_host);
|
|
|
|
int n_physical_cores;
|
|
if (kr != KERN_SUCCESS) {
|
|
// If we couldn't get # of physical CPUs, don't panic. Assume we have 1.
|
|
n_physical_cores = 1;
|
|
LOG(LS_ERROR) << "Failed to determine number of physical cores, assuming 1";
|
|
} else {
|
|
n_physical_cores = hbi.physical_cpu;
|
|
LOG(LS_INFO) << "Number of physical cores:" << n_physical_cores;
|
|
}
|
|
|
|
// Change init list default for few core systems. The assumption here is that
|
|
// encoding, which we measure here, takes about 1/4 of the processing of a
|
|
// two-way call. This is roughly true for x86 using both vp8 and vp9 without
|
|
// hardware encoding. Since we don't affect the incoming stream here, we only
|
|
// control about 1/2 of the total processing needs, but this is not taken into
|
|
// account.
|
|
if (n_physical_cores == 1)
|
|
high_encode_usage_threshold_percent = 20; // Roughly 1/4 of 100%.
|
|
else if (n_physical_cores == 2)
|
|
high_encode_usage_threshold_percent = 40; // Roughly 1/4 of 200%.
|
|
#endif // defined(WEBRTC_MAC) && !defined(WEBRTC_IOS)
|
|
|
|
// Note that we make the interval 2x+epsilon wide, since libyuv scaling steps
|
|
// are close to that (when squared). This wide interval makes sure that
|
|
// scaling up or down does not jump all the way across the interval.
|
|
low_encode_usage_threshold_percent =
|
|
(high_encode_usage_threshold_percent - 1) / 2;
|
|
}
|
|
|
|
// Class for calculating the processing usage on the send-side (the average
|
|
// processing time of a frame divided by the average time difference between
|
|
// captured frames).
|
|
class OveruseFrameDetector::SendProcessingUsage {
|
|
public:
|
|
explicit SendProcessingUsage(const CpuOveruseOptions& options)
|
|
: kWeightFactorFrameDiff(0.998f),
|
|
kWeightFactorProcessing(0.995f),
|
|
kInitialSampleDiffMs(40.0f),
|
|
count_(0),
|
|
options_(options),
|
|
max_sample_diff_ms_(kDefaultSampleDiffMs * kMaxSampleDiffMarginFactor),
|
|
filtered_processing_ms_(new rtc::ExpFilter(kWeightFactorProcessing)),
|
|
filtered_frame_diff_ms_(new rtc::ExpFilter(kWeightFactorFrameDiff)) {
|
|
Reset();
|
|
}
|
|
virtual ~SendProcessingUsage() {}
|
|
|
|
void Reset() {
|
|
count_ = 0;
|
|
max_sample_diff_ms_ = kDefaultSampleDiffMs * kMaxSampleDiffMarginFactor;
|
|
filtered_frame_diff_ms_->Reset(kWeightFactorFrameDiff);
|
|
filtered_frame_diff_ms_->Apply(1.0f, kInitialSampleDiffMs);
|
|
filtered_processing_ms_->Reset(kWeightFactorProcessing);
|
|
filtered_processing_ms_->Apply(1.0f, InitialProcessingMs());
|
|
}
|
|
|
|
void SetMaxSampleDiffMs(float diff_ms) { max_sample_diff_ms_ = diff_ms; }
|
|
|
|
void AddCaptureSample(float sample_ms) {
|
|
float exp = sample_ms / kDefaultSampleDiffMs;
|
|
exp = std::min(exp, kMaxExp);
|
|
filtered_frame_diff_ms_->Apply(exp, sample_ms);
|
|
}
|
|
|
|
void AddSample(float processing_ms, int64_t diff_last_sample_ms) {
|
|
++count_;
|
|
float exp = diff_last_sample_ms / kDefaultSampleDiffMs;
|
|
exp = std::min(exp, kMaxExp);
|
|
filtered_processing_ms_->Apply(exp, processing_ms);
|
|
}
|
|
|
|
virtual int Value() {
|
|
if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) {
|
|
return static_cast<int>(InitialUsageInPercent() + 0.5f);
|
|
}
|
|
float frame_diff_ms = std::max(filtered_frame_diff_ms_->filtered(), 1.0f);
|
|
frame_diff_ms = std::min(frame_diff_ms, max_sample_diff_ms_);
|
|
float encode_usage_percent =
|
|
100.0f * filtered_processing_ms_->filtered() / frame_diff_ms;
|
|
return static_cast<int>(encode_usage_percent + 0.5);
|
|
}
|
|
|
|
private:
|
|
float InitialUsageInPercent() const {
|
|
// Start in between the underuse and overuse threshold.
|
|
return (options_.low_encode_usage_threshold_percent +
|
|
options_.high_encode_usage_threshold_percent) / 2.0f;
|
|
}
|
|
|
|
float InitialProcessingMs() const {
|
|
return InitialUsageInPercent() * kInitialSampleDiffMs / 100;
|
|
}
|
|
|
|
const float kWeightFactorFrameDiff;
|
|
const float kWeightFactorProcessing;
|
|
const float kInitialSampleDiffMs;
|
|
uint64_t count_;
|
|
const CpuOveruseOptions options_;
|
|
float max_sample_diff_ms_;
|
|
std::unique_ptr<rtc::ExpFilter> filtered_processing_ms_;
|
|
std::unique_ptr<rtc::ExpFilter> filtered_frame_diff_ms_;
|
|
};
|
|
|
|
// Class used for manual testing of overuse, enabled via field trial flag.
|
|
class OveruseFrameDetector::OverdoseInjector
|
|
: public OveruseFrameDetector::SendProcessingUsage {
|
|
public:
|
|
OverdoseInjector(const CpuOveruseOptions& options,
|
|
int64_t normal_period_ms,
|
|
int64_t overuse_period_ms,
|
|
int64_t underuse_period_ms)
|
|
: OveruseFrameDetector::SendProcessingUsage(options),
|
|
normal_period_ms_(normal_period_ms),
|
|
overuse_period_ms_(overuse_period_ms),
|
|
underuse_period_ms_(underuse_period_ms),
|
|
state_(State::kNormal),
|
|
last_toggling_ms_(-1) {
|
|
RTC_DCHECK_GT(overuse_period_ms, 0);
|
|
RTC_DCHECK_GT(normal_period_ms, 0);
|
|
LOG(LS_INFO) << "Simulating overuse with intervals " << normal_period_ms
|
|
<< "ms normal mode, " << overuse_period_ms
|
|
<< "ms overuse mode.";
|
|
}
|
|
|
|
~OverdoseInjector() override {}
|
|
|
|
int Value() override {
|
|
int64_t now_ms = rtc::TimeMillis();
|
|
if (last_toggling_ms_ == -1) {
|
|
last_toggling_ms_ = now_ms;
|
|
} else {
|
|
switch (state_) {
|
|
case State::kNormal:
|
|
if (now_ms > last_toggling_ms_ + normal_period_ms_) {
|
|
state_ = State::kOveruse;
|
|
last_toggling_ms_ = now_ms;
|
|
LOG(LS_INFO) << "Simulating CPU overuse.";
|
|
}
|
|
break;
|
|
case State::kOveruse:
|
|
if (now_ms > last_toggling_ms_ + overuse_period_ms_) {
|
|
state_ = State::kUnderuse;
|
|
last_toggling_ms_ = now_ms;
|
|
LOG(LS_INFO) << "Simulating CPU underuse.";
|
|
}
|
|
break;
|
|
case State::kUnderuse:
|
|
if (now_ms > last_toggling_ms_ + underuse_period_ms_) {
|
|
state_ = State::kNormal;
|
|
last_toggling_ms_ = now_ms;
|
|
LOG(LS_INFO) << "Actual CPU overuse measurements in effect.";
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
rtc::Optional<int> overried_usage_value;
|
|
switch (state_) {
|
|
case State::kNormal:
|
|
break;
|
|
case State::kOveruse:
|
|
overried_usage_value.emplace(250);
|
|
break;
|
|
case State::kUnderuse:
|
|
overried_usage_value.emplace(5);
|
|
break;
|
|
}
|
|
|
|
return overried_usage_value.value_or(SendProcessingUsage::Value());
|
|
}
|
|
|
|
private:
|
|
const int64_t normal_period_ms_;
|
|
const int64_t overuse_period_ms_;
|
|
const int64_t underuse_period_ms_;
|
|
enum class State { kNormal, kOveruse, kUnderuse } state_;
|
|
int64_t last_toggling_ms_;
|
|
};
|
|
|
|
std::unique_ptr<OveruseFrameDetector::SendProcessingUsage>
|
|
OveruseFrameDetector::CreateSendProcessingUsage(
|
|
const CpuOveruseOptions& options) {
|
|
std::unique_ptr<SendProcessingUsage> instance;
|
|
std::string toggling_interval =
|
|
field_trial::FindFullName("WebRTC-ForceSimulatedOveruseIntervalMs");
|
|
if (!toggling_interval.empty()) {
|
|
int normal_period_ms = 0;
|
|
int overuse_period_ms = 0;
|
|
int underuse_period_ms = 0;
|
|
if (sscanf(toggling_interval.c_str(), "%d-%d-%d", &normal_period_ms,
|
|
&overuse_period_ms, &underuse_period_ms) == 3) {
|
|
if (normal_period_ms > 0 && overuse_period_ms > 0 &&
|
|
underuse_period_ms > 0) {
|
|
instance.reset(new OverdoseInjector(
|
|
options, normal_period_ms, overuse_period_ms, underuse_period_ms));
|
|
} else {
|
|
LOG(LS_WARNING)
|
|
<< "Invalid (non-positive) normal/overuse/underuse periods: "
|
|
<< normal_period_ms << " / " << overuse_period_ms << " / "
|
|
<< underuse_period_ms;
|
|
}
|
|
} else {
|
|
LOG(LS_WARNING) << "Malformed toggling interval: " << toggling_interval;
|
|
}
|
|
}
|
|
|
|
if (!instance) {
|
|
// No valid overuse simulation parameters set, use normal usage class.
|
|
instance.reset(new SendProcessingUsage(options));
|
|
}
|
|
|
|
return instance;
|
|
}
|
|
|
|
class OveruseFrameDetector::CheckOveruseTask : public rtc::QueuedTask {
|
|
public:
|
|
explicit CheckOveruseTask(OveruseFrameDetector* overuse_detector)
|
|
: overuse_detector_(overuse_detector) {
|
|
rtc::TaskQueue::Current()->PostDelayedTask(
|
|
std::unique_ptr<rtc::QueuedTask>(this), kTimeToFirstCheckForOveruseMs);
|
|
}
|
|
|
|
void Stop() {
|
|
RTC_CHECK(task_checker_.CalledSequentially());
|
|
overuse_detector_ = nullptr;
|
|
}
|
|
|
|
private:
|
|
bool Run() override {
|
|
RTC_CHECK(task_checker_.CalledSequentially());
|
|
if (!overuse_detector_)
|
|
return true; // This will make the task queue delete this task.
|
|
overuse_detector_->CheckForOveruse();
|
|
|
|
rtc::TaskQueue::Current()->PostDelayedTask(
|
|
std::unique_ptr<rtc::QueuedTask>(this), kCheckForOveruseIntervalMs);
|
|
// Return false to prevent this task from being deleted. Ownership has been
|
|
// transferred to the task queue when PostDelayedTask was called.
|
|
return false;
|
|
}
|
|
rtc::SequencedTaskChecker task_checker_;
|
|
OveruseFrameDetector* overuse_detector_;
|
|
};
|
|
|
|
OveruseFrameDetector::OveruseFrameDetector(
|
|
const CpuOveruseOptions& options,
|
|
AdaptationObserverInterface* observer,
|
|
EncodedFrameObserver* encoder_timing,
|
|
CpuOveruseMetricsObserver* metrics_observer)
|
|
: check_overuse_task_(nullptr),
|
|
options_(options),
|
|
observer_(observer),
|
|
encoder_timing_(encoder_timing),
|
|
metrics_observer_(metrics_observer),
|
|
num_process_times_(0),
|
|
// TODO(nisse): Use rtc::Optional
|
|
last_capture_time_us_(-1),
|
|
last_processed_capture_time_us_(-1),
|
|
num_pixels_(0),
|
|
max_framerate_(kDefaultFrameRate),
|
|
last_overuse_time_ms_(-1),
|
|
checks_above_threshold_(0),
|
|
num_overuse_detections_(0),
|
|
last_rampup_time_ms_(-1),
|
|
in_quick_rampup_(false),
|
|
current_rampup_delay_ms_(kStandardRampUpDelayMs),
|
|
usage_(CreateSendProcessingUsage(options)) {
|
|
task_checker_.Detach();
|
|
}
|
|
|
|
OveruseFrameDetector::~OveruseFrameDetector() {
|
|
RTC_DCHECK(!check_overuse_task_) << "StopCheckForOverUse must be called.";
|
|
}
|
|
|
|
void OveruseFrameDetector::StartCheckForOveruse() {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
|
|
RTC_DCHECK(!check_overuse_task_);
|
|
check_overuse_task_ = new CheckOveruseTask(this);
|
|
}
|
|
void OveruseFrameDetector::StopCheckForOveruse() {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
|
|
check_overuse_task_->Stop();
|
|
check_overuse_task_ = nullptr;
|
|
}
|
|
|
|
void OveruseFrameDetector::EncodedFrameTimeMeasured(int encode_duration_ms) {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
|
|
if (!metrics_)
|
|
metrics_ = rtc::Optional<CpuOveruseMetrics>(CpuOveruseMetrics());
|
|
metrics_->encode_usage_percent = usage_->Value();
|
|
|
|
metrics_observer_->OnEncodedFrameTimeMeasured(encode_duration_ms, *metrics_);
|
|
}
|
|
|
|
bool OveruseFrameDetector::FrameSizeChanged(int num_pixels) const {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
|
|
if (num_pixels != num_pixels_) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool OveruseFrameDetector::FrameTimeoutDetected(int64_t now_us) const {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
|
|
if (last_capture_time_us_ == -1)
|
|
return false;
|
|
return (now_us - last_capture_time_us_) >
|
|
options_.frame_timeout_interval_ms * rtc::kNumMicrosecsPerMillisec;
|
|
}
|
|
|
|
void OveruseFrameDetector::ResetAll(int num_pixels) {
|
|
// Reset state, as a result resolution being changed. Do not however change
|
|
// the current frame rate back to the default.
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
|
|
num_pixels_ = num_pixels;
|
|
usage_->Reset();
|
|
frame_timing_.clear();
|
|
last_capture_time_us_ = -1;
|
|
last_processed_capture_time_us_ = -1;
|
|
num_process_times_ = 0;
|
|
metrics_ = rtc::Optional<CpuOveruseMetrics>();
|
|
OnTargetFramerateUpdated(max_framerate_);
|
|
}
|
|
|
|
void OveruseFrameDetector::OnTargetFramerateUpdated(int framerate_fps) {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
|
|
RTC_DCHECK_GE(framerate_fps, 0);
|
|
max_framerate_ = std::min(kMaxFramerate, framerate_fps);
|
|
usage_->SetMaxSampleDiffMs((1000 / std::max(kMinFramerate, max_framerate_)) *
|
|
kMaxSampleDiffMarginFactor);
|
|
}
|
|
|
|
void OveruseFrameDetector::FrameCaptured(const VideoFrame& frame,
|
|
int64_t time_when_first_seen_us) {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
|
|
|
|
if (FrameSizeChanged(frame.width() * frame.height()) ||
|
|
FrameTimeoutDetected(time_when_first_seen_us)) {
|
|
ResetAll(frame.width() * frame.height());
|
|
}
|
|
|
|
if (last_capture_time_us_ != -1)
|
|
usage_->AddCaptureSample(
|
|
1e-3 * (time_when_first_seen_us - last_capture_time_us_));
|
|
|
|
last_capture_time_us_ = time_when_first_seen_us;
|
|
|
|
frame_timing_.push_back(FrameTiming(frame.timestamp_us(), frame.timestamp(),
|
|
time_when_first_seen_us));
|
|
}
|
|
|
|
void OveruseFrameDetector::FrameSent(uint32_t timestamp,
|
|
int64_t time_sent_in_us) {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
|
|
// Delay before reporting actual encoding time, used to have the ability to
|
|
// detect total encoding time when encoding more than one layer. Encoding is
|
|
// here assumed to finish within a second (or that we get enough long-time
|
|
// samples before one second to trigger an overuse even when this is not the
|
|
// case).
|
|
static const int64_t kEncodingTimeMeasureWindowMs = 1000;
|
|
for (auto& it : frame_timing_) {
|
|
if (it.timestamp == timestamp) {
|
|
it.last_send_us = time_sent_in_us;
|
|
break;
|
|
}
|
|
}
|
|
// TODO(pbos): Handle the case/log errors when not finding the corresponding
|
|
// frame (either very slow encoding or incorrect wrong timestamps returned
|
|
// from the encoder).
|
|
// This is currently the case for all frames on ChromeOS, so logging them
|
|
// would be spammy, and triggering overuse would be wrong.
|
|
// https://crbug.com/350106
|
|
while (!frame_timing_.empty()) {
|
|
FrameTiming timing = frame_timing_.front();
|
|
if (time_sent_in_us - timing.capture_us <
|
|
kEncodingTimeMeasureWindowMs * rtc::kNumMicrosecsPerMillisec) {
|
|
break;
|
|
}
|
|
if (timing.last_send_us != -1) {
|
|
int encode_duration_us =
|
|
static_cast<int>(timing.last_send_us - timing.capture_us);
|
|
if (encoder_timing_) {
|
|
// TODO(nisse): Update encoder_timing_ to also use us units.
|
|
encoder_timing_->OnEncodeTiming(timing.capture_time_us /
|
|
rtc::kNumMicrosecsPerMillisec,
|
|
encode_duration_us /
|
|
rtc::kNumMicrosecsPerMillisec);
|
|
}
|
|
if (last_processed_capture_time_us_ != -1) {
|
|
int64_t diff_us = timing.capture_us - last_processed_capture_time_us_;
|
|
usage_->AddSample(1e-3 * encode_duration_us, 1e-3 * diff_us);
|
|
}
|
|
last_processed_capture_time_us_ = timing.capture_us;
|
|
EncodedFrameTimeMeasured(encode_duration_us /
|
|
rtc::kNumMicrosecsPerMillisec);
|
|
}
|
|
frame_timing_.pop_front();
|
|
}
|
|
}
|
|
|
|
void OveruseFrameDetector::CheckForOveruse() {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
|
|
++num_process_times_;
|
|
if (num_process_times_ <= options_.min_process_count || !metrics_)
|
|
return;
|
|
|
|
int64_t now_ms = rtc::TimeMillis();
|
|
|
|
if (IsOverusing(*metrics_)) {
|
|
// If the last thing we did was going up, and now have to back down, we need
|
|
// to check if this peak was short. If so we should back off to avoid going
|
|
// back and forth between this load, the system doesn't seem to handle it.
|
|
bool check_for_backoff = last_rampup_time_ms_ > last_overuse_time_ms_;
|
|
if (check_for_backoff) {
|
|
if (now_ms - last_rampup_time_ms_ < kStandardRampUpDelayMs ||
|
|
num_overuse_detections_ > kMaxOverusesBeforeApplyRampupDelay) {
|
|
// Going up was not ok for very long, back off.
|
|
current_rampup_delay_ms_ *= kRampUpBackoffFactor;
|
|
if (current_rampup_delay_ms_ > kMaxRampUpDelayMs)
|
|
current_rampup_delay_ms_ = kMaxRampUpDelayMs;
|
|
} else {
|
|
// Not currently backing off, reset rampup delay.
|
|
current_rampup_delay_ms_ = kStandardRampUpDelayMs;
|
|
}
|
|
}
|
|
|
|
last_overuse_time_ms_ = now_ms;
|
|
in_quick_rampup_ = false;
|
|
checks_above_threshold_ = 0;
|
|
++num_overuse_detections_;
|
|
|
|
if (observer_)
|
|
observer_->AdaptDown(kScaleReasonCpu);
|
|
} else if (IsUnderusing(*metrics_, now_ms)) {
|
|
last_rampup_time_ms_ = now_ms;
|
|
in_quick_rampup_ = true;
|
|
|
|
if (observer_)
|
|
observer_->AdaptUp(kScaleReasonCpu);
|
|
}
|
|
|
|
int rampup_delay =
|
|
in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
|
|
|
|
LOG(LS_VERBOSE) << " Frame stats: "
|
|
<< " encode usage " << metrics_->encode_usage_percent
|
|
<< " overuse detections " << num_overuse_detections_
|
|
<< " rampup delay " << rampup_delay;
|
|
}
|
|
|
|
bool OveruseFrameDetector::IsOverusing(const CpuOveruseMetrics& metrics) {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
|
|
|
|
if (metrics.encode_usage_percent >=
|
|
options_.high_encode_usage_threshold_percent) {
|
|
++checks_above_threshold_;
|
|
} else {
|
|
checks_above_threshold_ = 0;
|
|
}
|
|
return checks_above_threshold_ >= options_.high_threshold_consecutive_count;
|
|
}
|
|
|
|
bool OveruseFrameDetector::IsUnderusing(const CpuOveruseMetrics& metrics,
|
|
int64_t time_now) {
|
|
RTC_DCHECK_CALLED_SEQUENTIALLY(&task_checker_);
|
|
int delay = in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
|
|
if (time_now < last_rampup_time_ms_ + delay)
|
|
return false;
|
|
|
|
return metrics.encode_usage_percent <
|
|
options_.low_encode_usage_threshold_percent;
|
|
}
|
|
} // namespace webrtc
|