Files
platform-external-webrtc/webrtc/modules/video_coding/timing_unittest.cc
philipel 5908c71128 Lint fix for webrtc/modules/video_coding PART 3!
Trying to submit all changes at once proved impossible since there were
too many changes in too many files. The changes to PRESUBMIT.py
will be uploaded in the last CL.
(original CL: https://codereview.webrtc.org/1528503003/)

BUG=webrtc:5309
TBR=mflodman@webrtc.org

Review URL: https://codereview.webrtc.org/1540243002

Cr-Commit-Position: refs/heads/master@{#11105}
2015-12-21 16:23:29 +00:00

150 lines
5.3 KiB
C++

/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/modules/video_coding/include/video_coding.h"
#include "webrtc/modules/video_coding/internal_defines.h"
#include "webrtc/modules/video_coding/timing.h"
#include "webrtc/modules/video_coding/test/test_util.h"
#include "webrtc/system_wrappers/include/clock.h"
#include "webrtc/system_wrappers/include/trace.h"
#include "webrtc/test/testsupport/fileutils.h"
namespace webrtc {
TEST(ReceiverTiming, Tests) {
SimulatedClock clock(0);
VCMTiming timing(&clock);
uint32_t waitTime = 0;
uint32_t jitterDelayMs = 0;
uint32_t maxDecodeTimeMs = 0;
uint32_t timeStamp = 0;
timing.Reset();
timing.UpdateCurrentDelay(timeStamp);
timing.Reset();
timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds());
jitterDelayMs = 20;
timing.SetJitterDelay(jitterDelayMs);
timing.UpdateCurrentDelay(timeStamp);
timing.set_render_delay(0);
waitTime = timing.MaxWaitingTime(
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
clock.TimeInMilliseconds());
// First update initializes the render time. Since we have no decode delay
// we get waitTime = renderTime - now - renderDelay = jitter.
EXPECT_EQ(jitterDelayMs, waitTime);
jitterDelayMs += VCMTiming::kDelayMaxChangeMsPerS + 10;
timeStamp += 90000;
clock.AdvanceTimeMilliseconds(1000);
timing.SetJitterDelay(jitterDelayMs);
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
clock.TimeInMilliseconds());
// Since we gradually increase the delay we only get 100 ms every second.
EXPECT_EQ(jitterDelayMs - 10, waitTime);
timeStamp += 90000;
clock.AdvanceTimeMilliseconds(1000);
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
clock.TimeInMilliseconds());
EXPECT_EQ(waitTime, jitterDelayMs);
// 300 incoming frames without jitter, verify that this gives the exact wait
// time.
for (int i = 0; i < 300; i++) {
clock.AdvanceTimeMilliseconds(1000 / 25);
timeStamp += 90000 / 25;
timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds());
}
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
clock.TimeInMilliseconds());
EXPECT_EQ(waitTime, jitterDelayMs);
// Add decode time estimates.
for (int i = 0; i < 10; i++) {
int64_t startTimeMs = clock.TimeInMilliseconds();
clock.AdvanceTimeMilliseconds(10);
timing.StopDecodeTimer(
timeStamp, clock.TimeInMilliseconds() - startTimeMs,
clock.TimeInMilliseconds(),
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()));
timeStamp += 90000 / 25;
clock.AdvanceTimeMilliseconds(1000 / 25 - 10);
timing.IncomingTimestamp(timeStamp, clock.TimeInMilliseconds());
}
maxDecodeTimeMs = 10;
timing.SetJitterDelay(jitterDelayMs);
clock.AdvanceTimeMilliseconds(1000);
timeStamp += 90000;
timing.UpdateCurrentDelay(timeStamp);
waitTime = timing.MaxWaitingTime(
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
clock.TimeInMilliseconds());
EXPECT_EQ(waitTime, jitterDelayMs);
uint32_t minTotalDelayMs = 200;
timing.set_min_playout_delay(minTotalDelayMs);
clock.AdvanceTimeMilliseconds(5000);
timeStamp += 5 * 90000;
timing.UpdateCurrentDelay(timeStamp);
const int kRenderDelayMs = 10;
timing.set_render_delay(kRenderDelayMs);
waitTime = timing.MaxWaitingTime(
timing.RenderTimeMs(timeStamp, clock.TimeInMilliseconds()),
clock.TimeInMilliseconds());
// We should at least have minTotalDelayMs - decodeTime (10) - renderTime
// (10) to wait.
EXPECT_EQ(waitTime, minTotalDelayMs - maxDecodeTimeMs - kRenderDelayMs);
// The total video delay should be equal to the min total delay.
EXPECT_EQ(minTotalDelayMs, timing.TargetVideoDelay());
// Reset playout delay.
timing.set_min_playout_delay(0);
clock.AdvanceTimeMilliseconds(5000);
timeStamp += 5 * 90000;
timing.UpdateCurrentDelay(timeStamp);
}
TEST(ReceiverTiming, WrapAround) {
const int kFramerate = 25;
SimulatedClock clock(0);
VCMTiming timing(&clock);
// Provoke a wrap-around. The forth frame will have wrapped at 25 fps.
uint32_t timestamp = 0xFFFFFFFFu - 3 * 90000 / kFramerate;
for (int i = 0; i < 4; ++i) {
timing.IncomingTimestamp(timestamp, clock.TimeInMilliseconds());
clock.AdvanceTimeMilliseconds(1000 / kFramerate);
timestamp += 90000 / kFramerate;
int64_t render_time =
timing.RenderTimeMs(0xFFFFFFFFu, clock.TimeInMilliseconds());
EXPECT_EQ(3 * 1000 / kFramerate, render_time);
render_time = timing.RenderTimeMs(89u, // One second later in 90 kHz.
clock.TimeInMilliseconds());
EXPECT_EQ(3 * 1000 / kFramerate + 1, render_time);
}
}
} // namespace webrtc