
NOTRY=true Review-Url: https://codereview.webrtc.org/2205803002 Cr-Commit-Position: refs/heads/master@{#13610}
891 lines
34 KiB
C++
891 lines
34 KiB
C++
/*
|
|
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/tools/event_log_visualizer/analyzer.h"
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
#include "webrtc/audio_receive_stream.h"
|
|
#include "webrtc/audio_send_stream.h"
|
|
#include "webrtc/base/checks.h"
|
|
#include "webrtc/base/logging.h"
|
|
#include "webrtc/call.h"
|
|
#include "webrtc/common_types.h"
|
|
#include "webrtc/modules/congestion_controller/include/congestion_controller.h"
|
|
#include "webrtc/modules/rtp_rtcp/include/rtp_rtcp.h"
|
|
#include "webrtc/modules/rtp_rtcp/include/rtp_rtcp_defines.h"
|
|
#include "webrtc/modules/rtp_rtcp/source/rtp_utility.h"
|
|
#include "webrtc/modules/rtp_rtcp/source/rtcp_utility.h"
|
|
#include "webrtc/modules/rtp_rtcp/source/rtcp_packet/transport_feedback.h"
|
|
#include "webrtc/video_receive_stream.h"
|
|
#include "webrtc/video_send_stream.h"
|
|
|
|
namespace webrtc {
|
|
namespace plotting {
|
|
|
|
namespace {
|
|
|
|
std::string SsrcToString(uint32_t ssrc) {
|
|
std::stringstream ss;
|
|
ss << "SSRC " << ssrc;
|
|
return ss.str();
|
|
}
|
|
|
|
// Checks whether an SSRC is contained in the list of desired SSRCs.
|
|
// Note that an empty SSRC list matches every SSRC.
|
|
bool MatchingSsrc(uint32_t ssrc, const std::vector<uint32_t>& desired_ssrc) {
|
|
if (desired_ssrc.size() == 0)
|
|
return true;
|
|
return std::find(desired_ssrc.begin(), desired_ssrc.end(), ssrc) !=
|
|
desired_ssrc.end();
|
|
}
|
|
|
|
double AbsSendTimeToMicroseconds(int64_t abs_send_time) {
|
|
// The timestamp is a fixed point representation with 6 bits for seconds
|
|
// and 18 bits for fractions of a second. Thus, we divide by 2^18 to get the
|
|
// time in seconds and then multiply by 1000000 to convert to microseconds.
|
|
static constexpr double kTimestampToMicroSec =
|
|
1000000.0 / static_cast<double>(1 << 18);
|
|
return abs_send_time * kTimestampToMicroSec;
|
|
}
|
|
|
|
// Computes the difference |later| - |earlier| where |later| and |earlier|
|
|
// are counters that wrap at |modulus|. The difference is chosen to have the
|
|
// least absolute value. For example if |modulus| is 8, then the difference will
|
|
// be chosen in the range [-3, 4]. If |modulus| is 9, then the difference will
|
|
// be in [-4, 4].
|
|
int64_t WrappingDifference(uint32_t later, uint32_t earlier, int64_t modulus) {
|
|
RTC_DCHECK_LE(1, modulus);
|
|
RTC_DCHECK_LT(later, modulus);
|
|
RTC_DCHECK_LT(earlier, modulus);
|
|
int64_t difference =
|
|
static_cast<int64_t>(later) - static_cast<int64_t>(earlier);
|
|
int64_t max_difference = modulus / 2;
|
|
int64_t min_difference = max_difference - modulus + 1;
|
|
if (difference > max_difference) {
|
|
difference -= modulus;
|
|
}
|
|
if (difference < min_difference) {
|
|
difference += modulus;
|
|
}
|
|
return difference;
|
|
}
|
|
|
|
void RegisterHeaderExtensions(
|
|
const std::vector<webrtc::RtpExtension>& extensions,
|
|
webrtc::RtpHeaderExtensionMap* extension_map) {
|
|
extension_map->Erase();
|
|
for (const webrtc::RtpExtension& extension : extensions) {
|
|
extension_map->Register(webrtc::StringToRtpExtensionType(extension.uri),
|
|
extension.id);
|
|
}
|
|
}
|
|
|
|
constexpr float kLeftMargin = 0.01f;
|
|
constexpr float kRightMargin = 0.02f;
|
|
constexpr float kBottomMargin = 0.02f;
|
|
constexpr float kTopMargin = 0.05f;
|
|
|
|
} // namespace
|
|
|
|
bool EventLogAnalyzer::StreamId::operator<(const StreamId& other) const {
|
|
if (ssrc_ < other.ssrc_) {
|
|
return true;
|
|
}
|
|
if (ssrc_ == other.ssrc_) {
|
|
if (direction_ < other.direction_) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool EventLogAnalyzer::StreamId::operator==(const StreamId& other) const {
|
|
return ssrc_ == other.ssrc_ && direction_ == other.direction_;
|
|
}
|
|
|
|
|
|
EventLogAnalyzer::EventLogAnalyzer(const ParsedRtcEventLog& log)
|
|
: parsed_log_(log), window_duration_(250000), step_(10000) {
|
|
uint64_t first_timestamp = std::numeric_limits<uint64_t>::max();
|
|
uint64_t last_timestamp = std::numeric_limits<uint64_t>::min();
|
|
|
|
// Maps a stream identifier consisting of ssrc and direction
|
|
// to the header extensions used by that stream,
|
|
std::map<StreamId, RtpHeaderExtensionMap> extension_maps;
|
|
|
|
PacketDirection direction;
|
|
uint8_t header[IP_PACKET_SIZE];
|
|
size_t header_length;
|
|
size_t total_length;
|
|
|
|
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
|
|
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
|
|
if (event_type != ParsedRtcEventLog::VIDEO_RECEIVER_CONFIG_EVENT &&
|
|
event_type != ParsedRtcEventLog::VIDEO_SENDER_CONFIG_EVENT &&
|
|
event_type != ParsedRtcEventLog::AUDIO_RECEIVER_CONFIG_EVENT &&
|
|
event_type != ParsedRtcEventLog::AUDIO_SENDER_CONFIG_EVENT &&
|
|
event_type != ParsedRtcEventLog::LOG_START &&
|
|
event_type != ParsedRtcEventLog::LOG_END) {
|
|
uint64_t timestamp = parsed_log_.GetTimestamp(i);
|
|
first_timestamp = std::min(first_timestamp, timestamp);
|
|
last_timestamp = std::max(last_timestamp, timestamp);
|
|
}
|
|
|
|
switch (parsed_log_.GetEventType(i)) {
|
|
case ParsedRtcEventLog::VIDEO_RECEIVER_CONFIG_EVENT: {
|
|
VideoReceiveStream::Config config(nullptr);
|
|
parsed_log_.GetVideoReceiveConfig(i, &config);
|
|
StreamId stream(config.rtp.remote_ssrc, kIncomingPacket);
|
|
RegisterHeaderExtensions(config.rtp.extensions,
|
|
&extension_maps[stream]);
|
|
for (auto kv : config.rtp.rtx) {
|
|
StreamId rtx_stream(kv.second.ssrc, kIncomingPacket);
|
|
RegisterHeaderExtensions(config.rtp.extensions,
|
|
&extension_maps[rtx_stream]);
|
|
}
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::VIDEO_SENDER_CONFIG_EVENT: {
|
|
VideoSendStream::Config config(nullptr);
|
|
parsed_log_.GetVideoSendConfig(i, &config);
|
|
for (auto ssrc : config.rtp.ssrcs) {
|
|
StreamId stream(ssrc, kOutgoingPacket);
|
|
RegisterHeaderExtensions(config.rtp.extensions,
|
|
&extension_maps[stream]);
|
|
}
|
|
for (auto ssrc : config.rtp.rtx.ssrcs) {
|
|
StreamId stream(ssrc, kOutgoingPacket);
|
|
RegisterHeaderExtensions(config.rtp.extensions,
|
|
&extension_maps[stream]);
|
|
}
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::AUDIO_RECEIVER_CONFIG_EVENT: {
|
|
AudioReceiveStream::Config config;
|
|
// TODO(terelius): Parse the audio configs once we have them.
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::AUDIO_SENDER_CONFIG_EVENT: {
|
|
AudioSendStream::Config config(nullptr);
|
|
// TODO(terelius): Parse the audio configs once we have them.
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::RTP_EVENT: {
|
|
MediaType media_type;
|
|
parsed_log_.GetRtpHeader(i, &direction, &media_type, header,
|
|
&header_length, &total_length);
|
|
// Parse header to get SSRC.
|
|
RtpUtility::RtpHeaderParser rtp_parser(header, header_length);
|
|
RTPHeader parsed_header;
|
|
rtp_parser.Parse(&parsed_header);
|
|
StreamId stream(parsed_header.ssrc, direction);
|
|
// Look up the extension_map and parse it again to get the extensions.
|
|
if (extension_maps.count(stream) == 1) {
|
|
RtpHeaderExtensionMap* extension_map = &extension_maps[stream];
|
|
rtp_parser.Parse(&parsed_header, extension_map);
|
|
}
|
|
uint64_t timestamp = parsed_log_.GetTimestamp(i);
|
|
rtp_packets_[stream].push_back(
|
|
LoggedRtpPacket(timestamp, parsed_header, total_length));
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::RTCP_EVENT: {
|
|
uint8_t packet[IP_PACKET_SIZE];
|
|
MediaType media_type;
|
|
parsed_log_.GetRtcpPacket(i, &direction, &media_type, packet,
|
|
&total_length);
|
|
|
|
RtpUtility::RtpHeaderParser rtp_parser(packet, total_length);
|
|
RTPHeader parsed_header;
|
|
RTC_CHECK(rtp_parser.ParseRtcp(&parsed_header));
|
|
uint32_t ssrc = parsed_header.ssrc;
|
|
|
|
RTCPUtility::RTCPParserV2 rtcp_parser(packet, total_length, true);
|
|
RTC_CHECK(rtcp_parser.IsValid());
|
|
|
|
RTCPUtility::RTCPPacketTypes packet_type = rtcp_parser.Begin();
|
|
while (packet_type != RTCPUtility::RTCPPacketTypes::kInvalid) {
|
|
switch (packet_type) {
|
|
case RTCPUtility::RTCPPacketTypes::kTransportFeedback: {
|
|
// Currently feedback is logged twice, both for audio and video.
|
|
// Only act on one of them.
|
|
if (media_type == MediaType::VIDEO) {
|
|
std::unique_ptr<rtcp::RtcpPacket> rtcp_packet(
|
|
rtcp_parser.ReleaseRtcpPacket());
|
|
StreamId stream(ssrc, direction);
|
|
uint64_t timestamp = parsed_log_.GetTimestamp(i);
|
|
rtcp_packets_[stream].push_back(LoggedRtcpPacket(
|
|
timestamp, kRtcpTransportFeedback, std::move(rtcp_packet)));
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
rtcp_parser.Iterate();
|
|
packet_type = rtcp_parser.PacketType();
|
|
}
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::LOG_START: {
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::LOG_END: {
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::BWE_PACKET_LOSS_EVENT: {
|
|
BwePacketLossEvent bwe_update;
|
|
bwe_update.timestamp = parsed_log_.GetTimestamp(i);
|
|
parsed_log_.GetBwePacketLossEvent(i, &bwe_update.new_bitrate,
|
|
&bwe_update.fraction_loss,
|
|
&bwe_update.expected_packets);
|
|
bwe_loss_updates_.push_back(bwe_update);
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::BWE_PACKET_DELAY_EVENT: {
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::AUDIO_PLAYOUT_EVENT: {
|
|
break;
|
|
}
|
|
case ParsedRtcEventLog::UNKNOWN_EVENT: {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (last_timestamp < first_timestamp) {
|
|
// No useful events in the log.
|
|
first_timestamp = last_timestamp = 0;
|
|
}
|
|
begin_time_ = first_timestamp;
|
|
end_time_ = last_timestamp;
|
|
call_duration_s_ = static_cast<float>(end_time_ - begin_time_) / 1000000;
|
|
}
|
|
|
|
class BitrateObserver : public CongestionController::Observer,
|
|
public RemoteBitrateObserver {
|
|
public:
|
|
BitrateObserver() : last_bitrate_bps_(0), bitrate_updated_(false) {}
|
|
|
|
void OnNetworkChanged(uint32_t bitrate_bps,
|
|
uint8_t fraction_loss,
|
|
int64_t rtt_ms) override {
|
|
last_bitrate_bps_ = bitrate_bps;
|
|
bitrate_updated_ = true;
|
|
}
|
|
|
|
void OnReceiveBitrateChanged(const std::vector<uint32_t>& ssrcs,
|
|
uint32_t bitrate) override {}
|
|
|
|
uint32_t last_bitrate_bps() const { return last_bitrate_bps_; }
|
|
bool GetAndResetBitrateUpdated() {
|
|
bool bitrate_updated = bitrate_updated_;
|
|
bitrate_updated_ = false;
|
|
return bitrate_updated;
|
|
}
|
|
|
|
private:
|
|
uint32_t last_bitrate_bps_;
|
|
bool bitrate_updated_;
|
|
};
|
|
|
|
void EventLogAnalyzer::CreatePacketGraph(PacketDirection desired_direction,
|
|
Plot* plot) {
|
|
std::map<uint32_t, TimeSeries> time_series;
|
|
|
|
PacketDirection direction;
|
|
MediaType media_type;
|
|
uint8_t header[IP_PACKET_SIZE];
|
|
size_t header_length, total_length;
|
|
|
|
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
|
|
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
|
|
if (event_type == ParsedRtcEventLog::RTP_EVENT) {
|
|
parsed_log_.GetRtpHeader(i, &direction, &media_type, header,
|
|
&header_length, &total_length);
|
|
if (direction == desired_direction) {
|
|
// Parse header to get SSRC.
|
|
RtpUtility::RtpHeaderParser rtp_parser(header, header_length);
|
|
RTPHeader parsed_header;
|
|
rtp_parser.Parse(&parsed_header);
|
|
// Filter on SSRC.
|
|
if (MatchingSsrc(parsed_header.ssrc, desired_ssrc_)) {
|
|
uint64_t timestamp = parsed_log_.GetTimestamp(i);
|
|
float x = static_cast<float>(timestamp - begin_time_) / 1000000;
|
|
float y = total_length;
|
|
time_series[parsed_header.ssrc].points.push_back(
|
|
TimeSeriesPoint(x, y));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set labels and put in graph.
|
|
for (auto& kv : time_series) {
|
|
kv.second.label = SsrcToString(kv.first);
|
|
kv.second.style = BAR_GRAPH;
|
|
plot->series_list_.push_back(std::move(kv.second));
|
|
}
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Packet size (bytes)", kBottomMargin,
|
|
kTopMargin);
|
|
if (desired_direction == webrtc::PacketDirection::kIncomingPacket) {
|
|
plot->SetTitle("Incoming RTP packets");
|
|
} else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) {
|
|
plot->SetTitle("Outgoing RTP packets");
|
|
}
|
|
}
|
|
|
|
// For each SSRC, plot the time between the consecutive playouts.
|
|
void EventLogAnalyzer::CreatePlayoutGraph(Plot* plot) {
|
|
std::map<uint32_t, TimeSeries> time_series;
|
|
std::map<uint32_t, uint64_t> last_playout;
|
|
|
|
uint32_t ssrc;
|
|
|
|
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
|
|
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
|
|
if (event_type == ParsedRtcEventLog::AUDIO_PLAYOUT_EVENT) {
|
|
parsed_log_.GetAudioPlayout(i, &ssrc);
|
|
uint64_t timestamp = parsed_log_.GetTimestamp(i);
|
|
if (MatchingSsrc(ssrc, desired_ssrc_)) {
|
|
float x = static_cast<float>(timestamp - begin_time_) / 1000000;
|
|
float y = static_cast<float>(timestamp - last_playout[ssrc]) / 1000;
|
|
if (time_series[ssrc].points.size() == 0) {
|
|
// There were no previusly logged playout for this SSRC.
|
|
// Generate a point, but place it on the x-axis.
|
|
y = 0;
|
|
}
|
|
time_series[ssrc].points.push_back(TimeSeriesPoint(x, y));
|
|
last_playout[ssrc] = timestamp;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set labels and put in graph.
|
|
for (auto& kv : time_series) {
|
|
kv.second.label = SsrcToString(kv.first);
|
|
kv.second.style = BAR_GRAPH;
|
|
plot->series_list_.push_back(std::move(kv.second));
|
|
}
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Time since last playout (ms)", kBottomMargin,
|
|
kTopMargin);
|
|
plot->SetTitle("Audio playout");
|
|
}
|
|
|
|
// For each SSRC, plot the time between the consecutive playouts.
|
|
void EventLogAnalyzer::CreateSequenceNumberGraph(Plot* plot) {
|
|
std::map<uint32_t, TimeSeries> time_series;
|
|
std::map<uint32_t, uint16_t> last_seqno;
|
|
|
|
PacketDirection direction;
|
|
MediaType media_type;
|
|
uint8_t header[IP_PACKET_SIZE];
|
|
size_t header_length, total_length;
|
|
|
|
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
|
|
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
|
|
if (event_type == ParsedRtcEventLog::RTP_EVENT) {
|
|
parsed_log_.GetRtpHeader(i, &direction, &media_type, header,
|
|
&header_length, &total_length);
|
|
uint64_t timestamp = parsed_log_.GetTimestamp(i);
|
|
if (direction == PacketDirection::kIncomingPacket) {
|
|
// Parse header to get SSRC.
|
|
RtpUtility::RtpHeaderParser rtp_parser(header, header_length);
|
|
RTPHeader parsed_header;
|
|
rtp_parser.Parse(&parsed_header);
|
|
// Filter on SSRC.
|
|
if (MatchingSsrc(parsed_header.ssrc, desired_ssrc_)) {
|
|
float x = static_cast<float>(timestamp - begin_time_) / 1000000;
|
|
int y = WrappingDifference(parsed_header.sequenceNumber,
|
|
last_seqno[parsed_header.ssrc], 1ul << 16);
|
|
if (time_series[parsed_header.ssrc].points.size() == 0) {
|
|
// There were no previusly logged playout for this SSRC.
|
|
// Generate a point, but place it on the x-axis.
|
|
y = 0;
|
|
}
|
|
time_series[parsed_header.ssrc].points.push_back(
|
|
TimeSeriesPoint(x, y));
|
|
last_seqno[parsed_header.ssrc] = parsed_header.sequenceNumber;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set labels and put in graph.
|
|
for (auto& kv : time_series) {
|
|
kv.second.label = SsrcToString(kv.first);
|
|
kv.second.style = BAR_GRAPH;
|
|
plot->series_list_.push_back(std::move(kv.second));
|
|
}
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Difference since last packet", kBottomMargin,
|
|
kTopMargin);
|
|
plot->SetTitle("Sequence number");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateDelayChangeGraph(Plot* plot) {
|
|
for (auto& kv : rtp_packets_) {
|
|
StreamId stream_id = kv.first;
|
|
// Filter on direction and SSRC.
|
|
if (stream_id.GetDirection() != kIncomingPacket ||
|
|
!MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) {
|
|
continue;
|
|
}
|
|
|
|
TimeSeries time_series;
|
|
time_series.label = SsrcToString(stream_id.GetSsrc());
|
|
time_series.style = BAR_GRAPH;
|
|
const std::vector<LoggedRtpPacket>& packet_stream = kv.second;
|
|
int64_t last_abs_send_time = 0;
|
|
int64_t last_timestamp = 0;
|
|
for (const LoggedRtpPacket& packet : packet_stream) {
|
|
if (packet.header.extension.hasAbsoluteSendTime) {
|
|
int64_t send_time_diff =
|
|
WrappingDifference(packet.header.extension.absoluteSendTime,
|
|
last_abs_send_time, 1ul << 24);
|
|
int64_t recv_time_diff = packet.timestamp - last_timestamp;
|
|
|
|
last_abs_send_time = packet.header.extension.absoluteSendTime;
|
|
last_timestamp = packet.timestamp;
|
|
|
|
float x = static_cast<float>(packet.timestamp - begin_time_) / 1000000;
|
|
double y =
|
|
static_cast<double>(recv_time_diff -
|
|
AbsSendTimeToMicroseconds(send_time_diff)) /
|
|
1000;
|
|
if (time_series.points.size() == 0) {
|
|
// There were no previously logged packets for this SSRC.
|
|
// Generate a point, but place it on the x-axis.
|
|
y = 0;
|
|
}
|
|
time_series.points.emplace_back(x, y);
|
|
}
|
|
}
|
|
// Add the data set to the plot.
|
|
plot->series_list_.push_back(std::move(time_series));
|
|
}
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Latency change (ms)", kBottomMargin,
|
|
kTopMargin);
|
|
plot->SetTitle("Network latency change between consecutive packets");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateAccumulatedDelayChangeGraph(Plot* plot) {
|
|
for (auto& kv : rtp_packets_) {
|
|
StreamId stream_id = kv.first;
|
|
// Filter on direction and SSRC.
|
|
if (stream_id.GetDirection() != kIncomingPacket ||
|
|
!MatchingSsrc(stream_id.GetSsrc(), desired_ssrc_)) {
|
|
continue;
|
|
}
|
|
TimeSeries time_series;
|
|
time_series.label = SsrcToString(stream_id.GetSsrc());
|
|
time_series.style = LINE_GRAPH;
|
|
const std::vector<LoggedRtpPacket>& packet_stream = kv.second;
|
|
int64_t last_abs_send_time = 0;
|
|
int64_t last_timestamp = 0;
|
|
double accumulated_delay_ms = 0;
|
|
for (const LoggedRtpPacket& packet : packet_stream) {
|
|
if (packet.header.extension.hasAbsoluteSendTime) {
|
|
int64_t send_time_diff =
|
|
WrappingDifference(packet.header.extension.absoluteSendTime,
|
|
last_abs_send_time, 1ul << 24);
|
|
int64_t recv_time_diff = packet.timestamp - last_timestamp;
|
|
|
|
last_abs_send_time = packet.header.extension.absoluteSendTime;
|
|
last_timestamp = packet.timestamp;
|
|
|
|
float x = static_cast<float>(packet.timestamp - begin_time_) / 1000000;
|
|
accumulated_delay_ms +=
|
|
static_cast<double>(recv_time_diff -
|
|
AbsSendTimeToMicroseconds(send_time_diff)) /
|
|
1000;
|
|
if (time_series.points.size() == 0) {
|
|
// There were no previously logged packets for this SSRC.
|
|
// Generate a point, but place it on the x-axis.
|
|
accumulated_delay_ms = 0;
|
|
}
|
|
time_series.points.emplace_back(x, accumulated_delay_ms);
|
|
}
|
|
}
|
|
// Add the data set to the plot.
|
|
plot->series_list_.push_back(std::move(time_series));
|
|
}
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Latency change (ms)", kBottomMargin,
|
|
kTopMargin);
|
|
plot->SetTitle("Accumulated network latency change");
|
|
}
|
|
|
|
// Plot the total bandwidth used by all RTP streams.
|
|
void EventLogAnalyzer::CreateTotalBitrateGraph(
|
|
PacketDirection desired_direction,
|
|
Plot* plot) {
|
|
struct TimestampSize {
|
|
TimestampSize(uint64_t t, size_t s) : timestamp(t), size(s) {}
|
|
uint64_t timestamp;
|
|
size_t size;
|
|
};
|
|
std::vector<TimestampSize> packets;
|
|
|
|
PacketDirection direction;
|
|
size_t total_length;
|
|
|
|
// Extract timestamps and sizes for the relevant packets.
|
|
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
|
|
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
|
|
if (event_type == ParsedRtcEventLog::RTP_EVENT) {
|
|
parsed_log_.GetRtpHeader(i, &direction, nullptr, nullptr, nullptr,
|
|
&total_length);
|
|
if (direction == desired_direction) {
|
|
uint64_t timestamp = parsed_log_.GetTimestamp(i);
|
|
packets.push_back(TimestampSize(timestamp, total_length));
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t window_index_begin = 0;
|
|
size_t window_index_end = 0;
|
|
size_t bytes_in_window = 0;
|
|
|
|
// Calculate a moving average of the bitrate and store in a TimeSeries.
|
|
plot->series_list_.push_back(TimeSeries());
|
|
for (uint64_t time = begin_time_; time < end_time_ + step_; time += step_) {
|
|
while (window_index_end < packets.size() &&
|
|
packets[window_index_end].timestamp < time) {
|
|
bytes_in_window += packets[window_index_end].size;
|
|
window_index_end++;
|
|
}
|
|
while (window_index_begin < packets.size() &&
|
|
packets[window_index_begin].timestamp < time - window_duration_) {
|
|
RTC_DCHECK_LE(packets[window_index_begin].size, bytes_in_window);
|
|
bytes_in_window -= packets[window_index_begin].size;
|
|
window_index_begin++;
|
|
}
|
|
float window_duration_in_seconds =
|
|
static_cast<float>(window_duration_) / 1000000;
|
|
float x = static_cast<float>(time - begin_time_) / 1000000;
|
|
float y = bytes_in_window * 8 / window_duration_in_seconds / 1000;
|
|
plot->series_list_.back().points.push_back(TimeSeriesPoint(x, y));
|
|
}
|
|
|
|
// Set labels.
|
|
if (desired_direction == webrtc::PacketDirection::kIncomingPacket) {
|
|
plot->series_list_.back().label = "Incoming bitrate";
|
|
} else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) {
|
|
plot->series_list_.back().label = "Outgoing bitrate";
|
|
}
|
|
plot->series_list_.back().style = LINE_GRAPH;
|
|
|
|
// Overlay the send-side bandwidth estimate over the outgoing bitrate.
|
|
if (desired_direction == kOutgoingPacket) {
|
|
plot->series_list_.push_back(TimeSeries());
|
|
for (auto& bwe_update : bwe_loss_updates_) {
|
|
float x =
|
|
static_cast<float>(bwe_update.timestamp - begin_time_) / 1000000;
|
|
float y = static_cast<float>(bwe_update.new_bitrate) / 1000;
|
|
plot->series_list_.back().points.emplace_back(x, y);
|
|
}
|
|
plot->series_list_.back().label = "Loss-based estimate";
|
|
plot->series_list_.back().style = LINE_GRAPH;
|
|
}
|
|
plot->series_list_.back().style = LINE_GRAPH;
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin);
|
|
if (desired_direction == webrtc::PacketDirection::kIncomingPacket) {
|
|
plot->SetTitle("Incoming RTP bitrate");
|
|
} else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) {
|
|
plot->SetTitle("Outgoing RTP bitrate");
|
|
}
|
|
}
|
|
|
|
// For each SSRC, plot the bandwidth used by that stream.
|
|
void EventLogAnalyzer::CreateStreamBitrateGraph(
|
|
PacketDirection desired_direction,
|
|
Plot* plot) {
|
|
struct TimestampSize {
|
|
TimestampSize(uint64_t t, size_t s) : timestamp(t), size(s) {}
|
|
uint64_t timestamp;
|
|
size_t size;
|
|
};
|
|
std::map<uint32_t, std::vector<TimestampSize>> packets;
|
|
|
|
PacketDirection direction;
|
|
MediaType media_type;
|
|
uint8_t header[IP_PACKET_SIZE];
|
|
size_t header_length, total_length;
|
|
|
|
// Extract timestamps and sizes for the relevant packets.
|
|
for (size_t i = 0; i < parsed_log_.GetNumberOfEvents(); i++) {
|
|
ParsedRtcEventLog::EventType event_type = parsed_log_.GetEventType(i);
|
|
if (event_type == ParsedRtcEventLog::RTP_EVENT) {
|
|
parsed_log_.GetRtpHeader(i, &direction, &media_type, header,
|
|
&header_length, &total_length);
|
|
if (direction == desired_direction) {
|
|
// Parse header to get SSRC.
|
|
RtpUtility::RtpHeaderParser rtp_parser(header, header_length);
|
|
RTPHeader parsed_header;
|
|
rtp_parser.Parse(&parsed_header);
|
|
// Filter on SSRC.
|
|
if (MatchingSsrc(parsed_header.ssrc, desired_ssrc_)) {
|
|
uint64_t timestamp = parsed_log_.GetTimestamp(i);
|
|
packets[parsed_header.ssrc].push_back(
|
|
TimestampSize(timestamp, total_length));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto& kv : packets) {
|
|
size_t window_index_begin = 0;
|
|
size_t window_index_end = 0;
|
|
size_t bytes_in_window = 0;
|
|
|
|
// Calculate a moving average of the bitrate and store in a TimeSeries.
|
|
plot->series_list_.push_back(TimeSeries());
|
|
for (uint64_t time = begin_time_; time < end_time_ + step_; time += step_) {
|
|
while (window_index_end < kv.second.size() &&
|
|
kv.second[window_index_end].timestamp < time) {
|
|
bytes_in_window += kv.second[window_index_end].size;
|
|
window_index_end++;
|
|
}
|
|
while (window_index_begin < kv.second.size() &&
|
|
kv.second[window_index_begin].timestamp <
|
|
time - window_duration_) {
|
|
RTC_DCHECK_LE(kv.second[window_index_begin].size, bytes_in_window);
|
|
bytes_in_window -= kv.second[window_index_begin].size;
|
|
window_index_begin++;
|
|
}
|
|
float window_duration_in_seconds =
|
|
static_cast<float>(window_duration_) / 1000000;
|
|
float x = static_cast<float>(time - begin_time_) / 1000000;
|
|
float y = bytes_in_window * 8 / window_duration_in_seconds / 1000;
|
|
plot->series_list_.back().points.push_back(TimeSeriesPoint(x, y));
|
|
}
|
|
|
|
// Set labels.
|
|
plot->series_list_.back().label = SsrcToString(kv.first);
|
|
plot->series_list_.back().style = LINE_GRAPH;
|
|
}
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 1, "Bitrate (kbps)", kBottomMargin, kTopMargin);
|
|
if (desired_direction == webrtc::PacketDirection::kIncomingPacket) {
|
|
plot->SetTitle("Incoming bitrate per stream");
|
|
} else if (desired_direction == webrtc::PacketDirection::kOutgoingPacket) {
|
|
plot->SetTitle("Outgoing bitrate per stream");
|
|
}
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateBweGraph(Plot* plot) {
|
|
std::map<uint64_t, const LoggedRtpPacket*> outgoing_rtp;
|
|
std::map<uint64_t, const LoggedRtcpPacket*> incoming_rtcp;
|
|
|
|
for (const auto& kv : rtp_packets_) {
|
|
if (kv.first.GetDirection() == PacketDirection::kOutgoingPacket) {
|
|
for (const LoggedRtpPacket& rtp_packet : kv.second)
|
|
outgoing_rtp.insert(std::make_pair(rtp_packet.timestamp, &rtp_packet));
|
|
}
|
|
}
|
|
|
|
for (const auto& kv : rtcp_packets_) {
|
|
if (kv.first.GetDirection() == PacketDirection::kIncomingPacket) {
|
|
for (const LoggedRtcpPacket& rtcp_packet : kv.second)
|
|
incoming_rtcp.insert(
|
|
std::make_pair(rtcp_packet.timestamp, &rtcp_packet));
|
|
}
|
|
}
|
|
|
|
SimulatedClock clock(0);
|
|
BitrateObserver observer;
|
|
RtcEventLogNullImpl null_event_log;
|
|
CongestionController cc(&clock, &observer, &observer, &null_event_log);
|
|
// TODO(holmer): Log the call config and use that here instead.
|
|
static const uint32_t kDefaultStartBitrateBps = 300000;
|
|
cc.SetBweBitrates(0, kDefaultStartBitrateBps, -1);
|
|
|
|
TimeSeries time_series;
|
|
time_series.label = "BWE";
|
|
time_series.style = LINE_DOT_GRAPH;
|
|
|
|
auto rtp_iterator = outgoing_rtp.begin();
|
|
auto rtcp_iterator = incoming_rtcp.begin();
|
|
|
|
auto NextRtpTime = [&]() {
|
|
if (rtp_iterator != outgoing_rtp.end())
|
|
return static_cast<int64_t>(rtp_iterator->first);
|
|
return std::numeric_limits<int64_t>::max();
|
|
};
|
|
|
|
auto NextRtcpTime = [&]() {
|
|
if (rtcp_iterator != incoming_rtcp.end())
|
|
return static_cast<int64_t>(rtcp_iterator->first);
|
|
return std::numeric_limits<int64_t>::max();
|
|
};
|
|
|
|
auto NextProcessTime = [&]() {
|
|
if (rtcp_iterator != incoming_rtcp.end() ||
|
|
rtp_iterator != outgoing_rtp.end()) {
|
|
return clock.TimeInMicroseconds() +
|
|
std::max<int64_t>(cc.TimeUntilNextProcess() * 1000, 0);
|
|
}
|
|
return std::numeric_limits<int64_t>::max();
|
|
};
|
|
|
|
int64_t time_us = std::min(NextRtpTime(), NextRtcpTime());
|
|
while (time_us != std::numeric_limits<int64_t>::max()) {
|
|
clock.AdvanceTimeMicroseconds(time_us - clock.TimeInMicroseconds());
|
|
if (clock.TimeInMicroseconds() >= NextRtcpTime()) {
|
|
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtcpTime());
|
|
const LoggedRtcpPacket& rtcp = *rtcp_iterator->second;
|
|
if (rtcp.type == kRtcpTransportFeedback) {
|
|
cc.GetTransportFeedbackObserver()->OnTransportFeedback(
|
|
*static_cast<rtcp::TransportFeedback*>(rtcp.packet.get()));
|
|
}
|
|
++rtcp_iterator;
|
|
}
|
|
if (clock.TimeInMicroseconds() >= NextRtpTime()) {
|
|
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtpTime());
|
|
const LoggedRtpPacket& rtp = *rtp_iterator->second;
|
|
if (rtp.header.extension.hasTransportSequenceNumber) {
|
|
RTC_DCHECK(rtp.header.extension.hasTransportSequenceNumber);
|
|
cc.GetTransportFeedbackObserver()->AddPacket(
|
|
rtp.header.extension.transportSequenceNumber, rtp.total_length, 0);
|
|
rtc::SentPacket sent_packet(
|
|
rtp.header.extension.transportSequenceNumber, rtp.timestamp / 1000);
|
|
cc.OnSentPacket(sent_packet);
|
|
}
|
|
++rtp_iterator;
|
|
}
|
|
if (clock.TimeInMicroseconds() >= NextProcessTime()) {
|
|
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextProcessTime());
|
|
cc.Process();
|
|
}
|
|
if (observer.GetAndResetBitrateUpdated()) {
|
|
uint32_t y = observer.last_bitrate_bps() / 1000;
|
|
float x = static_cast<float>(clock.TimeInMicroseconds() - begin_time_) /
|
|
1000000;
|
|
time_series.points.emplace_back(x, y);
|
|
}
|
|
time_us = std::min({NextRtpTime(), NextRtcpTime(), NextProcessTime()});
|
|
}
|
|
// Add the data set to the plot.
|
|
plot->series_list_.push_back(std::move(time_series));
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 10, "Bitrate (kbps)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Simulated BWE behavior");
|
|
}
|
|
|
|
void EventLogAnalyzer::CreateNetworkDelayFeebackGraph(Plot* plot) {
|
|
std::map<uint64_t, const LoggedRtpPacket*> outgoing_rtp;
|
|
std::map<uint64_t, const LoggedRtcpPacket*> incoming_rtcp;
|
|
|
|
for (const auto& kv : rtp_packets_) {
|
|
if (kv.first.GetDirection() == PacketDirection::kOutgoingPacket) {
|
|
for (const LoggedRtpPacket& rtp_packet : kv.second)
|
|
outgoing_rtp.insert(std::make_pair(rtp_packet.timestamp, &rtp_packet));
|
|
}
|
|
}
|
|
|
|
for (const auto& kv : rtcp_packets_) {
|
|
if (kv.first.GetDirection() == PacketDirection::kIncomingPacket) {
|
|
for (const LoggedRtcpPacket& rtcp_packet : kv.second)
|
|
incoming_rtcp.insert(
|
|
std::make_pair(rtcp_packet.timestamp, &rtcp_packet));
|
|
}
|
|
}
|
|
|
|
SimulatedClock clock(0);
|
|
TransportFeedbackAdapter feedback_adapter(nullptr, &clock);
|
|
|
|
TimeSeries time_series;
|
|
time_series.label = "Network Delay Change";
|
|
time_series.style = LINE_DOT_GRAPH;
|
|
int64_t estimated_base_delay_ms = std::numeric_limits<int64_t>::max();
|
|
|
|
auto rtp_iterator = outgoing_rtp.begin();
|
|
auto rtcp_iterator = incoming_rtcp.begin();
|
|
|
|
auto NextRtpTime = [&]() {
|
|
if (rtp_iterator != outgoing_rtp.end())
|
|
return static_cast<int64_t>(rtp_iterator->first);
|
|
return std::numeric_limits<int64_t>::max();
|
|
};
|
|
|
|
auto NextRtcpTime = [&]() {
|
|
if (rtcp_iterator != incoming_rtcp.end())
|
|
return static_cast<int64_t>(rtcp_iterator->first);
|
|
return std::numeric_limits<int64_t>::max();
|
|
};
|
|
|
|
int64_t time_us = std::min(NextRtpTime(), NextRtcpTime());
|
|
while (time_us != std::numeric_limits<int64_t>::max()) {
|
|
clock.AdvanceTimeMicroseconds(time_us - clock.TimeInMicroseconds());
|
|
if (clock.TimeInMicroseconds() >= NextRtcpTime()) {
|
|
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtcpTime());
|
|
const LoggedRtcpPacket& rtcp = *rtcp_iterator->second;
|
|
if (rtcp.type == kRtcpTransportFeedback) {
|
|
std::vector<PacketInfo> feedback =
|
|
feedback_adapter.GetPacketFeedbackVector(
|
|
*static_cast<rtcp::TransportFeedback*>(rtcp.packet.get()));
|
|
for (const PacketInfo& packet : feedback) {
|
|
int64_t y = packet.arrival_time_ms - packet.send_time_ms;
|
|
float x =
|
|
static_cast<float>(clock.TimeInMicroseconds() - begin_time_) /
|
|
1000000;
|
|
estimated_base_delay_ms = std::min(y, estimated_base_delay_ms);
|
|
time_series.points.emplace_back(x, y);
|
|
}
|
|
}
|
|
++rtcp_iterator;
|
|
}
|
|
if (clock.TimeInMicroseconds() >= NextRtpTime()) {
|
|
RTC_DCHECK_EQ(clock.TimeInMicroseconds(), NextRtpTime());
|
|
const LoggedRtpPacket& rtp = *rtp_iterator->second;
|
|
if (rtp.header.extension.hasTransportSequenceNumber) {
|
|
RTC_DCHECK(rtp.header.extension.hasTransportSequenceNumber);
|
|
feedback_adapter.AddPacket(rtp.header.extension.transportSequenceNumber,
|
|
rtp.total_length, 0);
|
|
feedback_adapter.OnSentPacket(
|
|
rtp.header.extension.transportSequenceNumber, rtp.timestamp / 1000);
|
|
}
|
|
++rtp_iterator;
|
|
}
|
|
time_us = std::min(NextRtpTime(), NextRtcpTime());
|
|
}
|
|
// We assume that the base network delay (w/o queues) is the min delay
|
|
// observed during the call.
|
|
for (TimeSeriesPoint& point : time_series.points)
|
|
point.y -= estimated_base_delay_ms;
|
|
// Add the data set to the plot.
|
|
plot->series_list_.push_back(std::move(time_series));
|
|
|
|
plot->SetXAxis(0, call_duration_s_, "Time (s)", kLeftMargin, kRightMargin);
|
|
plot->SetSuggestedYAxis(0, 10, "Delay (ms)", kBottomMargin, kTopMargin);
|
|
plot->SetTitle("Network Delay Change.");
|
|
}
|
|
} // namespace plotting
|
|
} // namespace webrtc
|