The commands needs to be handled separately from the rest of the result
types.
Added a test case that reproduces the problem and verifies that the change
in code fixes it.
When a LOAD DATA LOCAL INFILE finishes, the client sends an empty
packet. The second case when the client sends an empty packet when the
previous packet was exactly 0xffffff bytes long. These two packets were
confused which caused the internal state to temporarily flip from inactive
to ending and back to inactive.
The aforementioned flip-flopping didn't have any practical differences but
it was caught by a debug assertion.
The COM_STMT_FETCH command will create a response. This was a
readwritesplit-specific interpretation of the command and it was wrong.
Also record the currently executed command event for session commands.
Readwritesplit would not handle multiple overlapping COM_STMT_EXECUTE
commands properly if they opened cursors. This was due to the fact that
the result would not be marked as complete and COM_STMT_FETCH commands
were executed as if they did not return results.
The correct implementation is to consider a COM_STMT_EXECUTE that opens a
cursor complete only when the first EOF packet is read (that is, when the
resultset header is read). This allows subsequent COM_STMT_FETCH commands
to be handled separately.
The separate COM_STMT_FETCH handling must count the number of packets that
are being fetched. This allows correct tracking of the state of a
COM_STMT_FETCH by checking that the number of packets is correct or the
second EOF/ERR packet is read.
When a LOAD DATA LOCAL INFILE is actively rejected by the server, the
server sends an error to the client. This error was not detected and the
router was stuck in the special mode that handles LOAD DATA LOCAL INFILE.
The current command needs to be updated before the queries are actually
routed. This allows the KILL command detection and processing to correctly
work.
When the connection pool is inspected, both the client username and IP
must match. This causes the pool to be partitioned by username and IP,
prevening unintentional sharing of connections between different users.
The use of `router_options=master,slave` was not working as expected. This
was mostly caused by the master bit checks using a bitwise AND instead of
comparing equality. In addition to this, the master would not be
considered a valid candidate if both slaves and masters were available.
The Backend::dcb() method gives the raw pointer to the internal DCB. This
pointer is used by at least readwritesplit to map raw DCB pointers to
backends. To prevent stale pointers from being returned, m_dcb needs to be
set to NULL after it has been closed.
The `MYSQL_ROW row` variable was being overwritten by the extra query done
by the SST method detection code. Moving it into its own function prevents
this and makes the code significantly easier to comprehend.
Added a test case that reproduced the problem (MaxScale crashed) and
verifies that the patch fixes the problem.
The monitor queried the session-specific domain id, which does not follow the global
value while the session is alive. This caused the monitor to follow the wrong gtid
domain if the domain was changed after MaxScale was started. This patch modifies the
query to read the global value instead. Even this is not fool-proof, as existing
sessions can issue writes with the old domain, confusing the gtid-parsing.
From a practical perspective it makes no relevant difference
whether you have to add an entry to the config file and restart
maxscale or if you have to restart maxscale and provide a specific
command line, so better to provide just either possiblity.
More important would be to provide a way for turning this feature
on and off at runtime.
With the configuration entry
dump_last_statements=[never|on_close|on_error]
you can now specify when and if to dump the last statements
of of a session.
With the configuration entry
retain_last_statements=<unsigned>
or the debug flag '--debug=retain-last-statements=<unsigned>',
MaxScale will store the specified number of last statements
for each session. By calling
session_dump_statements(session);
MaxScale will dump the last statements as NOTICE messages.
For debugging purposes.
If a MaxScale-generated configuration defines an empty value, it is
ignored with the assumption that the next modification will cause the
problem to correct itself.
Disabling the session cache prevents errors from being generated as the
default OpenSSL configuration is to enable session caching but with an
uninitialized context ID. In addition to preventing the errors, it
prevents the possible security problems implicated by the definition a
"static" context ID.
We need to copy some data from a AF_UNIX based listener dcb
to the accepted client dcb, to prevent assertion violation in
dcb_get_port(). Further, to be able to log the path in the case
of an authentication error we need to copy that as well.
If a table/database rule has been provided then if the resultset
does not contain table/database names, then we consider it a match
(subject to the column obviously).
Otherwise a rule like
{
"replace": {
"table": "info",
"column": "email"
},
"with": {
"fill": "*"
}
}
could be bypassed with a statement like
SELECT * FROM info UNION SELECT * from info
as the resultset in that case will not indicate that the column emain
is from info, which it will if the statement is
SELECT * FROM info;
When a multi-statement query consisting completely of UPDATE statements is
received, the packets can be received in two separate buffers. To cope
with this situation, the state change into REPLY_STATE_RSET_COLDEF must
only be done if the buffer contains more than a single packet.
Add missing listener JSON diagnostics call. Check that the
diagnostics_json function exists before calling it.
As the protocol modules don't have diagnostics functions, they aren't
called.
Replace hard-coded strings with constant parameters. This makes it
slightly cleaner.
The database-level query now only takes rows with either a global
select privileges or non-null database privileges. The table-level
query only accepts non-null databases and no global privileges,
as users with global select are added by the previous section.
If two services referred to the same filter instance, it would
cause the filter to deleted twice at MaxScale shutdown with a
crash as the result.
Now when the services are deleted we just collect the unique
filter instances and then delete them after all services have
been deleted.
Earlier, if a service had multiple listeners you would have had
MaxScale> show dbusers MyService
User names: alice@% ...
User names: bob@% ...
That is, no indication of which listener is reporting what. With
this commit the result will be
User names (MyListener1): alice@% ...
User names (MyListener2): bob@% ...
Further, the diagnostics function of an authenticator is now expected
to write the list of users to the provided DCB, without performing any
other formatting. The formatting (printing "User names" and appending
a line-feed) is now handled by the handler for the MaxAdmin command
"show dbusers".
This commit introduces changes that fix the relay master detection that
was broken by the merge from 2.1 into 2.2 by commit
1ecd791887994209eb29e56e1271f8c407cd0cdf.
In 2.2, the master server ID is used to detect whether a slave is actually
replicating from a master. The value is still displayed even if the slave
is not actively replicating from a master. The commit in 2.1 causes this
value to be stored unconditionally if it is available. By checking the
value of Last_IO_Errno and comparing it to a list of known error codes, we
know whether the slave is replicating properly.
The slave detection in 2.2 correctly identifies a broken slave with a
stopped IO thread. Due to this, the test case must be modified to check
that the relay master is not a slave if the IO thread is stopped.