3 Commits

Author SHA1 Message Date
068be82ee3 remove some codes 2020-06-11 11:28:08 +08:00
dced9d9ef7 use mysql instead of csv 2020-06-11 11:23:26 +08:00
fbb1dbd3f5 use mysql instead of csv to store face database 2020-06-11 11:20:00 +08:00
20 changed files with 413 additions and 75 deletions

View File

@ -4,7 +4,7 @@
<content url="file://$MODULE_DIR$">
<sourceFolder url="file://$MODULE_DIR$/data" isTestSource="false" />
</content>
<orderEntry type="jdk" jdkName="Python 3.7" jdkType="Python SDK" />
<orderEntry type="jdk" jdkName="Python 3.7 (2)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
<component name="TestRunnerService">

2
.idea/misc.xml generated
View File

@ -1,4 +1,4 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.7" project-jdk-type="Python SDK" />
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.7 (2)" project-jdk-type="Python SDK" />
</project>

117
.idea/workspace.xml generated
View File

@ -2,11 +2,8 @@
<project version="4">
<component name="ChangeListManager">
<list default="true" id="e58b655a-3a9b-4001-b4da-39e07ab46629" name="Default Changelist" comment="">
<change beforePath="$PROJECT_DIR$/.idea/Dlib_face_recognition_from_camera.iml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/Dlib_face_recognition_from_camera.iml" afterDir="false" />
<change beforePath="$PROJECT_DIR$/.idea/misc.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/misc.xml" afterDir="false" />
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
<change beforePath="$PROJECT_DIR$/face_reco_from_camera.py" beforeDir="false" afterPath="$PROJECT_DIR$/face_reco_from_camera.py" afterDir="false" />
<change beforePath="$PROJECT_DIR$/get_faces_from_camera.py" beforeDir="false" afterPath="$PROJECT_DIR$/get_faces_from_camera.py" afterDir="false" />
<change beforePath="$PROJECT_DIR$/features_extraction_to_mysql.py" beforeDir="false" afterPath="$PROJECT_DIR$/features_extraction_to_mysql.py" afterDir="false" />
</list>
<option name="EXCLUDED_CONVERTED_TO_IGNORED" value="true" />
<option name="SHOW_DIALOG" value="false" />
@ -33,7 +30,7 @@
</component>
<component name="PropertiesComponent">
<property name="SHARE_PROJECT_CONFIGURATION_FILES" value="true" />
<property name="last_opened_file_path" value="$PROJECT_DIR$" />
<property name="last_opened_file_path" value="$PROJECT_DIR$/../Django_MySQL_Table" />
<property name="settings.editor.selected.configurable" value="com.jetbrains.python.configuration.PyActiveSdkModuleConfigurable" />
</component>
<component name="RunDashboard">
@ -48,8 +45,8 @@
</list>
</option>
</component>
<component name="RunManager" selected="Python.face_descriptor_from_camera">
<configuration name="face_descriptor_compute" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
<component name="RunManager" selected="Python.features_extraction_to_mysql">
<configuration name="face_reco_from_camera_mysql" type="PythonConfigurationType" factoryName="Python" temporary="true">
<module name="Dlib_face_recognition_from_camera" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
@ -61,7 +58,7 @@
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/face_descriptor_compute.py" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/face_reco_from_camera_mysql.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
@ -70,7 +67,7 @@
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<configuration name="face_descriptor_from_camera" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
<configuration name="features_extraction_to_mysql" type="PythonConfigurationType" factoryName="Python" temporary="true">
<module name="Dlib_face_recognition_from_camera" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
@ -82,49 +79,7 @@
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/face_descriptor_from_camera.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<configuration name="face_reco_from_camera" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
<module name="Dlib_face_recognition_from_camera" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/face_reco_from_camera.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<configuration name="features_extraction_to_csv" type="PythonConfigurationType" factoryName="Python" temporary="true">
<module name="Dlib_face_recognition_from_camera" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/features_extraction_to_csv.py" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/features_extraction_to_mysql.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
@ -154,20 +109,62 @@
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<configuration name="mysql_insert" type="PythonConfigurationType" factoryName="Python" temporary="true">
<module name="Dlib_face_recognition_from_camera" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/mysql_insert.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<configuration name="read_mysql" type="PythonConfigurationType" factoryName="Python" temporary="true">
<module name="Dlib_face_recognition_from_camera" />
<option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" />
<envs>
<env name="PYTHONUNBUFFERED" value="1" />
</envs>
<option name="SDK_HOME" value="" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
<option name="IS_MODULE_SDK" value="true" />
<option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" />
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/read_mysql.py" />
<option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" />
<option name="EMULATE_TERMINAL" value="false" />
<option name="MODULE_MODE" value="false" />
<option name="REDIRECT_INPUT" value="false" />
<option name="INPUT_FILE" value="" />
<method v="2" />
</configuration>
<list>
<item itemvalue="Python.face_descriptor_compute" />
<item itemvalue="Python.face_descriptor_from_camera" />
<item itemvalue="Python.face_reco_from_camera" />
<item itemvalue="Python.features_extraction_to_csv" />
<item itemvalue="Python.mysql_insert" />
<item itemvalue="Python.features_extraction_to_mysql" />
<item itemvalue="Python.face_reco_from_camera_mysql" />
<item itemvalue="Python.read_mysql" />
<item itemvalue="Python.get_faces_from_camera" />
</list>
<recent_temporary>
<list>
<item itemvalue="Python.face_descriptor_from_camera" />
<item itemvalue="Python.face_reco_from_camera" />
<item itemvalue="Python.features_extraction_to_csv" />
<item itemvalue="Python.features_extraction_to_mysql" />
<item itemvalue="Python.read_mysql" />
<item itemvalue="Python.face_reco_from_camera_mysql" />
<item itemvalue="Python.get_faces_from_camera" />
<item itemvalue="Python.face_descriptor_compute" />
<item itemvalue="Python.mysql_insert" />
</list>
</recent_temporary>
</component>

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.8 KiB

221
face_reco_from_camera_mysql.py Executable file
View File

@ -0,0 +1,221 @@
# 摄像头实时人脸识别
# Real-time face recognition
# Author: coneypo
# Blog: http://www.cnblogs.com/AdaminXie
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
# Created at 2018-05-11
# Updated at 2020-05-29
import dlib # 人脸处理的库 Dlib
import numpy as np # 数据处理的库 Numpy
import cv2 # 图像处理的库 OpenCV
import pandas as pd # 数据处理的库 Pandas
import os
import time
from PIL import Image, ImageDraw, ImageFont
import pymysql
db = pymysql.connect("localhost", "root", "intel@123", "dlib_database")
cursor = db.cursor()
# 1. Dlib 正向人脸检测器
detector = dlib.get_frontal_face_detector()
# 2. Dlib 人脸 landmark 特征点检测器
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
# 3. Dlib Resnet 人脸识别模型,提取 128D 的特征矢量
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
class Face_Recognizer:
def __init__(self):
# 用来存放所有录入人脸特征的数组 / Save the features of faces in the database
self.features_known_list = []
# 存储录入人脸名字 / Save the name of faces known
self.name_known_cnt = 0
self.name_known_list = []
# 存储当前摄像头中捕获到的所有人脸的坐标名字 / Save the positions and names of current faces captured
self.pos_camera_list = []
self.name_camera_list = []
# 存储当前摄像头中捕获到的人脸数
self.faces_cnt = 0
# 存储当前摄像头中捕获到的人脸特征
self.features_camera_list = []
# Update FPS
self.fps = 0
self.frame_start_time = 0
# 从 "features_all.csv" 读取录入人脸特征
def get_face_database(self):
# 1. get database face numbers
cmd_rd = "select count(*) from dlib_face_table;"
cursor.execute(cmd_rd)
results = cursor.fetchall()
person_cnt = int(results[0][0])
# 2. get features for person X
for person in range(person_cnt):
# lookup for personX
cmd_lookup = "select * from dlib_face_table where person_x=\"person_" + str(person + 1) + "\";"
cursor.execute(cmd_lookup)
results = cursor.fetchall()
results = list(results[0][1:])
self.features_known_list.append(results)
self.name_known_list.append("Person_" + str(person + 1))
print(results)
self.name_known_cnt = len(self.name_known_list)
print("Faces in Database:", len(self.features_known_list))
return 1
# 计算两个128D向量间的欧式距离 / Compute the e-distance between two 128D features
@staticmethod
def return_euclidean_distance(feature_1, feature_2):
feature_1 = np.array(feature_1)
feature_2 = np.array(feature_2)
dist = np.sqrt(np.sum(np.square(feature_1 - feature_2)))
return dist
# 更新 FPS / Update FPS of Video stream
def update_fps(self):
now = time.time()
self.frame_time = now - self.frame_start_time
self.fps = 1.0 / self.frame_time
self.frame_start_time = now
def draw_note(self, img_rd):
font = cv2.FONT_ITALIC
cv2.putText(img_rd, "Face Recognizer", (20, 40), font, 1, (255, 255, 255), 1, cv2.LINE_AA)
cv2.putText(img_rd, "FPS: " + str(self.fps.__round__(2)), (20, 100), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Faces: " + str(self.faces_cnt), (20, 140), font, 0.8, (0, 255, 0), 1, cv2.LINE_AA)
cv2.putText(img_rd, "Q: Quit", (20, 450), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA)
def draw_name(self, img_rd):
# 在人脸框下面写人脸名字 / Write names under rectangle
font = ImageFont.truetype("simsun.ttc", 30)
img = Image.fromarray(cv2.cvtColor(img_rd, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img)
for i in range(self.faces_cnt):
# cv2.putText(img_rd, self.name_camera_list[i], self.pos_camera_list[i], font, 0.8, (0, 255, 255), 1, cv2.LINE_AA)
draw.text(xy=self.pos_camera_list[i], text=self.name_camera_list[i], font=font)
img_with_name = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
return img_with_name
# 修改显示人名
def modify_name_camera_list(self):
# Default known name: person_1, person_2, person_3
self.name_known_list[0] ='张三'.encode('utf-8').decode()
self.name_known_list[1] ='李四'.encode('utf-8').decode()
# self.name_known_list[2] ='xx'.encode('utf-8').decode()
# self.name_known_list[3] ='xx'.encode('utf-8').decode()
# self.name_known_list[4] ='xx'.encode('utf-8').decode()
# 处理获取的视频流,进行人脸识别 / Input video stream and face reco process
def process(self, stream):
# 1. 读取存放所有人脸特征的 csv
if self.get_face_database():
while stream.isOpened():
flag, img_rd = stream.read()
faces = detector(img_rd, 0)
kk = cv2.waitKey(1)
# 按下 q 键退出 / Press 'q' to quit
if kk == ord('q'):
break
else:
self.draw_note(img_rd)
self.features_camera_list = []
self.faces_cnt = 0
self.pos_camera_list = []
self.name_camera_list = []
# 2. 检测到人脸 / when face detected
if len(faces) != 0:
# 3. 获取当前捕获到的图像的所有人脸的特征,存储到 self.features_camera_list
# 3. Get the features captured and save into self.features_camera_list
for i in range(len(faces)):
shape = predictor(img_rd, faces[i])
self.features_camera_list.append(face_reco_model.compute_face_descriptor(img_rd, shape))
# 4. 遍历捕获到的图像中所有的人脸 / Traversal all the faces in the database
for k in range(len(faces)):
print("##### camera person", k + 1, "#####")
# 让人名跟随在矩形框的下方
# 确定人名的位置坐标
# 先默认所有人不认识,是 unknown
# Set the default names of faces with "unknown"
self.name_camera_list.append("unknown")
# 每个捕获人脸的名字坐标 / Positions of faces captured
self.pos_camera_list.append(tuple(
[faces[k].left(), int(faces[k].bottom() + (faces[k].bottom() - faces[k].top()) / 4)]))
# 5. 对于某张人脸,遍历所有存储的人脸特征
# For every faces detected, compare the faces in the database
e_distance_list = []
for i in range(len(self.features_known_list)):
# 如果 person_X 数据不为空
if str(self.features_known_list[i][0]) != '0.0':
print("with person", str(i + 1), "the e distance: ", end='')
e_distance_tmp = self.return_euclidean_distance(self.features_camera_list[k],
self.features_known_list[i])
print(e_distance_tmp)
e_distance_list.append(e_distance_tmp)
else:
# 空数据 person_X
e_distance_list.append(999999999)
# 6. 寻找出最小的欧式距离匹配 / Find the one with minimum e distance
similar_person_num = e_distance_list.index(min(e_distance_list))
print("Minimum e distance with person", self.name_known_list[similar_person_num])
if min(e_distance_list) < 0.4:
self.name_camera_list[k] = self.name_known_list[similar_person_num]
print("May be person " + str(self.name_known_list[similar_person_num]))
else:
print("Unknown person")
# 矩形框 / Draw rectangle
for kk, d in enumerate(faces):
# 绘制矩形框
cv2.rectangle(img_rd, tuple([d.left(), d.top()]), tuple([d.right(), d.bottom()]),
(0, 255, 255), 2)
print('\n')
self.faces_cnt = len(faces)
# 7. 在这里更改显示的人名 / Modify name if needed
# self.modify_name_camera_list()
# 8. 写名字 / Draw name
# self.draw_name(img_rd)
img_with_name = self.draw_name(img_rd)
else:
img_with_name = img_rd
print("Faces in camera now:", self.name_camera_list, "\n")
cv2.imshow("camera", img_with_name)
# 9. 更新 FPS / Update stream FPS
self.update_fps()
# OpenCV 调用摄像头并进行 process
def run(self):
cap = cv2.VideoCapture(0)
cap.set(3, 480)
self.process(cap)
cap.release()
cv2.destroyAllWindows()
def main():
Face_Recognizer_con = Face_Recognizer()
Face_Recognizer_con.run()
if __name__ == '__main__':
main()

View File

@ -82,13 +82,13 @@ for person in person_list:
person_num_list.append(int(person.split('_')[-1]))
person_cnt = max(person_num_list)
with open("data/features_all.csv", "w", newline="") as csvfile:
writer = csv.writer(csvfile)
for person in range(person_cnt):
# Get the mean/average features of face/personX, it will be a list with a length of 128D
print(path_images_from_camera + "person_" + str(person + 1))
features_mean_personX = return_features_mean_personX(path_images_from_camera + "person_" + str(person + 1))
writer.writerow(features_mean_personX)
print("特征均值 / The mean of features:", list(features_mean_personX))
print('\n')
print("所有录入人脸数据存入 / Save all the features of faces registered into: data/features_all.csv")
for person in range(person_cnt):
# Get the mean/average features of face/personX, it will be a list with a length of 128D
print(path_images_from_camera + "person_" + str(person + 1))
features_mean_personX = return_features_mean_personX(path_images_from_camera + "person_" + str(person + 1))
print(features_mean_personX.shape)
print(features_mean_personX[0])
print("特征均值 / The mean of features:", list(features_mean_personX))
print('\n')

117
features_extraction_to_mysql.py Executable file
View File

@ -0,0 +1,117 @@
# 从人脸图像文件中提取人脸特征存入 CSV
# Features extraction from images and save into features_all.csv
# Author: coneypo
# Blog: http://www.cnblogs.com/AdaminXie
# GitHub: https://github.com/coneypo/Dlib_face_recognition_from_camera
# Mail: coneypo@foxmail.com
# Created at 2018-05-11
# Updated at 2020-04-02
import os
import dlib
from skimage import io
import numpy as np
import pymysql
db = pymysql.connect("localhost", "root", "intel@123", "dlib_database")
cursor = db.cursor()
# 要读取人脸图像文件的路径
path_images_from_camera = "data/data_faces_from_camera/"
# 1. Dlib 正向人脸检测器
detector = dlib.get_frontal_face_detector()
# 2. Dlib 人脸 landmark 特征点检测器
predictor = dlib.shape_predictor('data/data_dlib/shape_predictor_68_face_landmarks.dat')
# 3. Dlib Resnet 人脸识别模型,提取 128D 的特征矢量
face_reco_model = dlib.face_recognition_model_v1("data/data_dlib/dlib_face_recognition_resnet_model_v1.dat")
# 返回单张图像的 128D 特征
def return_128d_features(path_img):
img_rd = io.imread(path_img)
faces = detector(img_rd, 1)
print("%-40s %-20s" % ("检测到人脸的图像 / Image with faces detected:", path_img), '\n')
# 因为有可能截下来的人脸再去检测,检测不出来人脸了
# 所以要确保是 检测到人脸的人脸图像 拿去算特征
if len(faces) != 0:
shape = predictor(img_rd, faces[0])
face_descriptor = face_reco_model.compute_face_descriptor(img_rd, shape)
else:
face_descriptor = 0
print("no face")
return face_descriptor
# 将文件夹中照片特征提取出来, 写入 CSV
def return_features_mean_personX(path_faces_personX):
features_list_personX = []
photos_list = os.listdir(path_faces_personX)
if photos_list:
for i in range(len(photos_list)):
# 调用return_128d_features()得到128d特征
print("%-40s %-20s" % ("正在读的人脸图像 / Image to read:", path_faces_personX + "/" + photos_list[i]))
features_128d = return_128d_features(path_faces_personX + "/" + photos_list[i])
# print(features_128d)
# 遇到没有检测出人脸的图片跳过
if features_128d == 0:
i += 1
else:
features_list_personX.append(features_128d)
else:
print("文件夹内图像文件为空 / Warning: No images in " + path_faces_personX + '/', '\n')
# 计算 128D 特征的均值
# personX 的 N 张图像 x 128D -> 1 x 128D
if features_list_personX:
features_mean_personX = np.array(features_list_personX).mean(axis=0)
else:
features_mean_personX = np.zeros(128, dtype=int, order='C')
return features_mean_personX
# 获取已录入的最后一个人脸序号 / get the num of latest person
person_list = os.listdir("data/data_faces_from_camera/")
person_num_list = []
for person in person_list:
person_num_list.append(int(person.split('_')[-1]))
person_cnt = max(person_num_list)
# 0. clear table in mysql
# cursor.execute("truncate dlib_face_table;")
# 1. check existing people in mysql
cursor.execute("select count(*) from dlib_face_table;")
person_start = int(cursor.fetchall()[0][0])
for person in range(person_start, person_cnt):
# Get the mean/average features of face/personX, it will be a list with a length of 128D
print(path_images_from_camera + "person_" + str(person + 1))
features_mean_personX = return_features_mean_personX(path_images_from_camera + "person_" + str(person + 1))
print("特征均值 / The mean of features:", list(features_mean_personX))
print('\n')
# 2. Insert person 1 to person X
cursor.execute("insert into dlib_face_table(person_x) values(\"person_"+str(person+1)+"\");")
# 3. Insert features for person X
for i in range(128):
# update issue_info set github_status='Open', github_type='bug' where github_id='2222';
print("update dlib_face_table set feature_" + str(i + 1) + '=\"' + str(
features_mean_personX[i]) + "\" where person_x=\"person_" + str(person + 1) + "\";")
cursor.execute("update dlib_face_table set feature_" + str(i + 1) + '=\"' + str(
features_mean_personX[i]) + "\" where person_x=\"person_" + str(person + 1) + "\";")
db.commit()

View File

@ -173,6 +173,7 @@ class Face_Register:
def run(self):
cap = cv2.VideoCapture(0)
cap.set(3, 640)
self.process(cap)
cap.release()

View File

@ -10,6 +10,7 @@ import cv2
cap = cv2.VideoCapture(0)
# cap.set(3, 480)
# cap.set(propId, value)
# 设置视频参数: propId - 设置的视频参数, value - 设置的参数值
"""
@ -26,8 +27,7 @@ cap = cv2.VideoCapture(0)
10. cv2.CAP_PROP_BRIGHTNESS Brightness of the image (only for cameras).
11. cv2.CAP_PROP_CONTRAST Contrast of the image (only for cameras).
12. cv2.CAP_PROP_SATURATION Saturation of the image (only for cameras).
13. cv2.CAP_PROP_HUE Hue of the image (only for cameras).
14. cv2.CAP_PROP_GAIN Gain of the image (only for cameras).
print 14. cv2.CAP_PROP_GAIN Gain of the image (only for cameras).
15. cv2.CAP_PROP_EXPOSURE Exposure (only for cameras).
16. cv2.CAP_PROP_CONVERT_RGB Boolean flags indicating whether images should be converted to RGB.
17. cv2.CAP_PROP_WHITE_BALANCE Currently unsupported
@ -36,7 +36,9 @@ cap = cv2.VideoCapture(0)
# The default shape of camera will be 640x480 in Windows or Ubuntu
# So we will not set "cap.set" here, it doesn't work
# cap.set(propId=cv2.CAP_PROP_FRAME_WIDTH, value=cap.get(cv2.CAP_PROP_FRAME_WIDTH))
# print(cv2.CAP_PROP_FRAME_WIDTH)
# print(cv2.CAP_PROP_FRAME_HEIGHT)
cap.set(3, 640)
# cap.isOpened() 返回 true/false, 检查摄像头初始化是否成功
print(cap.isOpened())