3 Commits

Author SHA1 Message Date
8dd0f2b606 Fix 2021-11-09 15:32:54 +08:00
54e2d07dde Update README.rst 2021-11-09 14:58:42 +08:00
b519dfc0bb 1. New GUI for face register with Tkinter, support set name when saving
faces;
2. `features_all.csv` modified to n x 129, 129D will be person_name + 128D features;

Signed-off-by: Zhengtian Xie <coneypo@gmail.com>
2021-11-09 14:47:44 +08:00
8 changed files with 331 additions and 23 deletions

View File

@ -8,8 +8,12 @@ Detect and recognize single/multi-faces from camera;
调用摄像头进行人脸识别, 支持多张人脸同时识别;
#. Tkinter 人脸录入界面, 支持录入时设置姓名 / Face register GUI with Tkinter, support setting name when registering
#. 摄像头人脸录入 / Face register
.. image:: introduction/face_register_tkinter_GUI.png
:align: center
#. 简单的 OpenCV 摄像头人脸录入界面 / Simple face register GUI with OpenCV
.. image:: introduction/face_register.png
:align: center
@ -84,7 +88,13 @@ Steps
git clone https://github.com/coneypo/Dlib_face_recognition_from_camera
#. 进行人脸信息采集录入 / Register faces
#. 进行人脸信息采集录入, Tkinter GUI / Register faces with Tkinter GUI
.. code-block:: bash
python3 get_faces_from_camera_tkinter.py
#. 进行人脸信息采集录入, OpenCV GUI / Register faces with OpenCV GUI
.. code-block:: bash
@ -122,11 +132,12 @@ Repo 的 tree / 树状图:
::
.
├── get_faces_from_camera.py # Step 1. Face register
├── get_faces_from_camera.py # Step 1. Face register GUI with OpenCV
├── get_faces_from_camera_tkinter.py # Step 1. Face register GUI with Tkinter
├── features_extraction_to_csv.py # Step 2. Feature extraction
├── face_reco_from_camera.py # Step 3. Face recognizer
├── face_reco_from_camera_single_face.py # Step 3. Face recognizer for single person
├── face_reco_from_camera_ot.py # Step 3. Face recognizer with OT
├── face_reco_from_camera_single_face.py # Step 3. Face recognizer for single person
├── face_reco_from_camera_ot.py # Step 3. Face recognizer with OT
├── face_descriptor_from_camera.py # Face descriptor computation
├── how_to_use_camera.py # Use the default camera by opencv
├── data
@ -193,7 +204,7 @@ Python 源码介绍如下:
从上一步存下来的图像文件中, 提取人脸数据存入CSV;
* 会生成一个存储所有特征人脸数据的 "features_all.csv";
* size: n*128 , n means n people you registered and 128 means 128D features of the face
* size: n*129 , n means nx faces you registered and 129 means face name + 128D features of this face
#. face_reco_from_camera.py:

View File

@ -54,13 +54,13 @@ class Face_Recognizer:
csv_rd = pd.read_csv(path_features_known_csv, header=None)
for i in range(csv_rd.shape[0]):
features_someone_arr = []
for j in range(0, 128):
self.face_name_known_list.append(csv_rd.iloc[i][0])
for j in range(1, 129):
if csv_rd.iloc[i][j] == '':
features_someone_arr.append('0')
else:
features_someone_arr.append(csv_rd.iloc[i][j])
self.face_feature_known_list.append(features_someone_arr)
self.face_name_known_list.append("Person_"+str(i+1))
logging.info("Faces in Database:%d", len(self.face_feature_known_list))
return 1
else:
@ -187,7 +187,7 @@ class Face_Recognizer:
self.current_frame_face_cnt = len(faces)
# 7. 在这里更改显示的人名 / Modify name if needed
self.show_chinese_name()
# self.show_chinese_name()
# 8. 写名字 / Draw name
img_with_name = self.draw_name(img_rd)
@ -206,8 +206,8 @@ class Face_Recognizer:
# OpenCV 调用摄像头并进行 process
def run(self):
# cap = cv2.VideoCapture("video.mp4") # Get video stream from video file
cap = cv2.VideoCapture(0) # Get video stream from camera
cap.set(3, 480) # 640x480
cap = cv2.VideoCapture("0") # Get video stream from camera
cap.set(3, 480) # 640x480
self.process(cap)
cap.release()

View File

@ -82,13 +82,13 @@ class Face_Recognizer:
csv_rd = pd.read_csv(path_features_known_csv, header=None)
for i in range(csv_rd.shape[0]):
features_someone_arr = []
for j in range(0, 128):
self.face_name_known_list.append(csv_rd.iloc[i][0])
for j in range(1, 129):
if csv_rd.iloc[i][j] == '':
features_someone_arr.append('0')
else:
features_someone_arr.append(csv_rd.iloc[i][j])
self.face_features_known_list.append(features_someone_arr)
self.face_name_known_list.append("Person_" + str(i + 1))
logging.info("Faces in Database: %d", len(self.face_features_known_list))
return 1
else:

View File

@ -80,13 +80,13 @@ class Face_Recognizer:
csv_rd = pd.read_csv(path_features_known_csv, header=None)
for i in range(csv_rd.shape[0]):
features_someone_arr = []
for j in range(0, 128):
self.face_name_known_list.append(csv_rd.iloc[i][0])
for j in range(1, 129):
if csv_rd.iloc[i][j] == '':
features_someone_arr.append('0')
else:
features_someone_arr.append(csv_rd.iloc[i][j])
self.features_known_list.append(features_someone_arr)
self.face_name_known_list.append("Person_" + str(i + 1))
logging.info("Faces in Database: %d", len(self.features_known_list))
return 1
else:

View File

@ -70,7 +70,7 @@ def return_features_mean_personX(path_face_personX):
# 计算 128D 特征的均值 / Compute the mean
# personX 的 N 张图像 x 128D -> 1 x 128D
if features_list_personX:
features_mean_personX = np.array(features_list_personX).mean(axis=0)
features_mean_personX = np.array(features_list_personX, dtype=object).mean(axis=0)
else:
features_mean_personX = np.zeros(128, dtype=int, order='C')
return features_mean_personX
@ -80,17 +80,23 @@ def main():
logging.basicConfig(level=logging.INFO)
# 获取已录入的最后一个人脸序号 / Get the order of latest person
person_list = os.listdir("data/data_faces_from_camera/")
person_num_list = []
for person in person_list:
person_num_list.append(int(person.split('_')[-1]))
person_cnt = max(person_num_list)
person_list.sort()
with open("data/features_all.csv", "w", newline="") as csvfile:
writer = csv.writer(csvfile)
for person in range(person_cnt):
for person in person_list:
# Get the mean/average features of face/personX, it will be a list with a length of 128D
logging.info("%sperson_%s", path_images_from_camera, str(person + 1))
features_mean_personX = return_features_mean_personX(path_images_from_camera + "person_" + str(person + 1))
logging.info("%sperson_%s", path_images_from_camera, person)
features_mean_personX = return_features_mean_personX(path_images_from_camera + person)
if len(person.split('_', 2)) == 2:
# "person_x"
person_name = person
else:
# "person_x_tom"
person_name = person.split('_', 2)[-1]
features_mean_personX = np.insert(features_mean_personX, 0, person_name, axis=0)
# features_mean_personX will be 129D, person name + 128 features
writer.writerow(features_mean_personX)
logging.info('\n')
logging.info("所有录入人脸数据存入 / Save all the features of faces registered into: data/features_all.csv")

View File

@ -0,0 +1,291 @@
from tkinter import *
from tkinter import font as tkFont
from PIL import Image, ImageTk
import dlib
import numpy as np
import cv2
import os
import shutil
import time
import logging
# Dlib 正向人脸检测器 / Use frontal face detector of Dlib
detector = dlib.get_frontal_face_detector()
class Face_Register:
def __init__(self):
self.existing_faces_cnt = 0 # 已录入的人脸计数器 / cnt for counting saved faces
self.ss_cnt = 0 # 录入 person_n 人脸时图片计数器 / cnt for screen shots
self.current_frame_faces_cnt = 0 # 当前帧中人脸计数器 / cnt for counting faces in current frame
# Tkinter GUI
self.win = Tk()
self.win.title("Face Register @coneypo")
self.win.geometry("1300x550")
# GUI left part
self.frame_left_camera = Frame(self.win)
self.label = Label(self.win)
self.label.pack(side=LEFT)
self.frame_left_camera.pack()
# GUI right part
self.frame_right_info = Frame(self.win)
self.label_cnt_face_in_database = Label(self.frame_right_info, text=str(self.existing_faces_cnt))
self.label_fps_info = Label(self.frame_right_info, text="")
self.input_name = Entry(self.frame_right_info)
self.input_name_char = ""
self.label_warning = Label(self.frame_right_info)
self.label_face_cnt = Label(self.frame_right_info, text="Faces in current frame: ")
self.log_all = Label(self.frame_right_info)
self.font_title = tkFont.Font(family='Helvetica', size=20, weight='bold')
self.font_step_title = tkFont.Font(family='Helvetica', size=15, weight='bold')
self.font_warning = tkFont.Font(family='Helvetica', size=15, weight='bold')
self.path_photos_from_camera = "data/data_faces_from_camera/"
self.current_face_dir = ""
self.font = cv2.FONT_ITALIC
# Current frame and face ROI position
self.current_frame = np.ndarray
self.face_ROI_image = np.ndarray
self.face_ROI_width_start = 0
self.face_ROI_height_start = 0
self.face_ROI_width = 0
self.face_ROI_height = 0
self.ww = 0
self.hh = 0
self.out_of_range_flag = FALSE
self.face_folder_created_flag = FALSE
# FPS
self.frame_time = 0
self.frame_start_time = 0
self.fps = 0
self.fps_show = 0
self.start_time = time.time()
self.cap = cv2.VideoCapture(0) # Get video stream from camera
# self.cap = cv2.VideoCapture("test.mp4") # Input local video
# 删除之前存的人脸数据文件夹 / Delete old face folders
def GUI_clear_data(self):
# 删除之前存的人脸数据文件夹, 删除 "/data_faces_from_camera/person_x/"...
folders_rd = os.listdir(self.path_photos_from_camera)
for i in range(len(folders_rd)):
shutil.rmtree(self.path_photos_from_camera + folders_rd[i])
if os.path.isfile("data/features_all.csv"):
os.remove("data/features_all.csv")
self.label_cnt_face_in_database['text'] = "0"
self.existing_faces_cnt = 0
self.log_all["text"] = "Face images and `features_all.csv` removed!"
def GUI_get_input_name(self):
self.input_name_char = self.input_name.get()
self.create_face_folder()
self.label_cnt_face_in_database['text'] = str(self.existing_faces_cnt)
def GUI_info(self):
Label(self.frame_right_info,
text="Face register",
font=self.font_title).grid(row=0, column=0, columnspan=3, sticky=W, padx=2, pady=20)
Label(self.frame_right_info,
text="FPS: ").grid(row=1, column=0, columnspan=2, sticky=W, padx=5, pady=2)
self.label_fps_info.grid(row=1, column=2, sticky=W, padx=5, pady=2)
Label(self.frame_right_info,
text="Faces in database: ").grid(row=2, column=0, columnspan=2, sticky=W, padx=5, pady=2)
self.label_cnt_face_in_database.grid(row=2, column=2, columnspan=3, sticky=W, padx=5, pady=2)
Label(self.frame_right_info,
text="Faces in current frame: ").grid(row=3, column=0, columnspan=2, sticky=W, padx=5, pady=2)
self.label_face_cnt.grid(row=3, column=2, columnspan=3, sticky=W, padx=5, pady=2)
self.label_warning.grid(row=4, column=0, columnspan=3, sticky=W, padx=5, pady=2)
# Step 1: Clear old data
Label(self.frame_right_info,
font=self.font_step_title,
text="Step 1: Clear face photos").grid(row=5, column=0, columnspan=2, sticky=W, padx=5, pady=20)
Button(self.frame_right_info,
text='Clear',
command=self.GUI_clear_data).grid(row=6, column=0, columnspan=3, sticky=W, padx=5, pady=2)
# Step 2: Input name and create folders for face
Label(self.frame_right_info,
font=self.font_step_title,
text="Step 2: Input name").grid(row=7, column=0, columnspan=2, sticky=W, padx=5, pady=20)
Label(self.frame_right_info, text="Name: ").grid(row=8, column=0, sticky=W, padx=5, pady=0)
self.input_name.grid(row=8, column=1, sticky=W, padx=0, pady=2)
Button(self.frame_right_info,
text='Input',
command=self.GUI_get_input_name).grid(row=8, column=2, padx=5)
# Step 3: Save current face in frame
Label(self.frame_right_info,
font=self.font_step_title,
text="Step 3: Save face image").grid(row=9, column=0, columnspan=2, sticky=W, padx=5, pady=20)
Button(self.frame_right_info,
text='Save current face',
command=self.save_current_face).grid(row=10, column=0, columnspan=3, sticky=W)
# Log
self.log_all.grid(row=11, column=0, columnspan=20, sticky=W, padx=5, pady=20)
self.frame_right_info.pack()
# 新建保存人脸图像文件和数据 CSV 文件夹 / Mkdir for saving photos and csv
def pre_work_mkdir(self):
# 新建文件夹 / Create folders to save face images and csv
if os.path.isdir(self.path_photos_from_camera):
pass
else:
os.mkdir(self.path_photos_from_camera)
# 如果有之前录入的人脸, 在之前 person_x 的序号按照 person_x+1 开始录入 / Start from person_x+1
def check_existing_faces_cnt(self):
if os.listdir("data/data_faces_from_camera/"):
# 获取已录入的最后一个人脸序号 / Get the order of latest person
person_list = os.listdir("data/data_faces_from_camera/")
person_num_list = []
for person in person_list:
person_order = person.split('_')[1].split('_')[0]
person_num_list.append(int(person_order))
self.existing_faces_cnt = max(person_num_list)
# 如果第一次存储或者没有之前录入的人脸, 按照 person_1 开始录入 / Start from person_1
else:
self.existing_faces_cnt = 0
# 更新 FPS / Update FPS of Video stream
def update_fps(self):
now = time.time()
# 每秒刷新 fps / Refresh fps per second
if str(self.start_time).split(".")[0] != str(now).split(".")[0]:
self.fps_show = self.fps
self.start_time = now
self.frame_time = now - self.frame_start_time
self.fps = 1.0 / self.frame_time
self.frame_start_time = now
self.label_fps_info["text"] = str(self.fps.__round__(2))
def create_face_folder(self):
# # 4. 新建存储人脸的文件夹 / Create the folders for saving faces
self.existing_faces_cnt += 1
if self.input_name_char:
self.current_face_dir = self.path_photos_from_camera + \
"person_" + str(self.existing_faces_cnt) + "_" + \
self.input_name_char
else:
self.current_face_dir = self.path_photos_from_camera + \
"person_" + str(self.existing_faces_cnt)
os.makedirs(self.current_face_dir)
self.log_all["text"] = "\"" + self.current_face_dir + "/\" created!"
logging.info("\n%-40s %s", "新建的人脸文件夹 / Create folders:", self.current_face_dir)
self.ss_cnt = 0 # 将人脸计数器清零 / Clear the cnt of screen shots
self.face_folder_created_flag = 1 # 已经按下 'n' / Pressed 'n' already
def save_current_face(self):
if self.face_folder_created_flag:
if self.current_frame_faces_cnt == 1:
if not self.out_of_range_flag:
self.ss_cnt += 1
# 根据人脸大小生成空的图像 / Create blank image according to the size of face detected
self.face_ROI_image = np.zeros((int(self.face_ROI_height * 2), self.face_ROI_width * 2, 3),
np.uint8)
for ii in range(self.face_ROI_height * 2):
for jj in range(self.face_ROI_width * 2):
self.face_ROI_image[ii][jj] = self.current_frame[self.face_ROI_height_start - self.hh + ii][
self.face_ROI_width_start - self.ww + jj]
self.log_all["text"] = "\"" + self.current_face_dir + "/img_face_" + str(
self.ss_cnt) + ".jpg\"" + " saved!"
self.face_ROI_image = cv2.cvtColor(self.face_ROI_image, cv2.COLOR_BGR2RGB)
cv2.imwrite(self.current_face_dir + "/img_face_" + str(self.ss_cnt) + ".jpg", self.face_ROI_image)
logging.info("%-40s %s/img_face_%s.jpg", "写入本地 / Save into:",
str(self.current_face_dir), str(self.ss_cnt) + ".jpg")
else:
self.log_all["text"] = "Please do not out of range!"
else:
self.log_all["text"] = "No face in current frame!"
else:
self.log_all["text"] = "Please run step 2!"
def get_frame(self):
try:
if self.cap.isOpened():
ret, frame = self.cap.read()
return ret, cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
except:
print("Error: No video input!!!")
# 获取人脸 / Main process of face detection and saving
def process(self):
ret, self.current_frame = self.get_frame()
faces = detector(self.current_frame, 0)
# Get frame
if ret:
self.update_fps()
self.label_face_cnt["text"] = str(len(faces))
# 检测到人脸 / Face detected
if len(faces) != 0:
# 矩形框 / Show the ROI of faces
for k, d in enumerate(faces):
self.face_ROI_width_start = d.left()
self.face_ROI_height_start = d.top()
# 计算矩形框大小 / Compute the size of rectangle box
self.face_ROI_height = (d.bottom() - d.top())
self.face_ROI_width = (d.right() - d.left())
self.hh = int(self.face_ROI_height / 2)
self.ww = int(self.face_ROI_width / 2)
# 判断人脸矩形框是否超出 480x640 / If the size of ROI > 480x640
if (d.right() + self.ww) > 640 or (d.bottom() + self.hh > 480) or (d.left() - self.ww < 0) or (
d.top() - self.hh < 0):
self.label_warning["text"] = "OUT OF RANGE"
self.label_warning['fg'] = 'red'
self.out_of_range_flag = TRUE
color_rectangle = (255, 0, 0)
else:
self.out_of_range_flag = FALSE
self.label_warning["text"] = ""
color_rectangle = (255, 255, 255)
self.current_frame = cv2.rectangle(self.current_frame,
tuple([d.left() - self.ww, d.top() - self.hh]),
tuple([d.right() + self.ww, d.bottom() + self.hh]),
color_rectangle, 2)
self.current_frame_faces_cnt = len(faces)
img = Image.fromarray(self.current_frame)
# Convert image to PhotoImage
imgtk = ImageTk.PhotoImage(image=img)
self.label.imgtk = imgtk
self.label.configure(image=imgtk)
self.win.after(20, self.process)
def run(self):
self.pre_work_mkdir()
self.check_existing_faces_cnt()
self.GUI_info()
self.process()
self.win.mainloop()
def main():
logging.basicConfig(level=logging.INFO)
Face_Register_con = Face_Register()
Face_Register_con.run()
if __name__ == '__main__':
main()

Binary file not shown.

After

Width:  |  Height:  |  Size: 184 KiB

0
test_tkinter.py Normal file
View File